首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Electroanalysis》2018,30(5):943-954
A simple voltammetric nanosensor was described for the highly sensitive determination of antiviral drug Tenofovir. The benzalkonium chloride and silver nanoparticles were associated to build a nanosensor on glassy carbon electrode. Surface characterictics were achieved using scanning electron microscopic technique. The voltammetric measurements were performed in pH range between 1.0 and 10.0 using cyclic, adsorptive stripping differential pulse and adsorptive stripping square wave voltammetry. The linear dependence of the peak current on the square root of scan rates and the slope value (0.770) demonstrated that the oxidation of tenofovir is a mix diffusion‐adsorption controlled process in pH 5.70 acetate buffer. The linearity range was found to be 6.0×10−8–1.0×10−6 M, and nanosensor displayed an excellent detection limit of 2.39×10−9 M by square wave adsorptive stripping voltammetry. The developed nanosensor was successfully applied for the determination of Tenofovir in pharmaceutical dosage form. Moreover, the voltammetric oxidation pathway of tenofovir was also investigated at bare glassy carbon electrode comparing with some possible model compounds (Adenine and Adefovir).  相似文献   

2.
Electrochemical studies of direct orange 8 were carried out with a bare glassy carbon electrode (GCE) and a polypyrrole-coated GCE in aqueous acetonitrile medium using voltammetric techniques. One reversible couple around 0.3?V due to the redox reaction of the phenol group, one reduction peak around ?0.4?V due to reduction of the azo group and one oxidation peak around 1.0?V due to oxidation of the amino group were observed. Chronocoulometric studies revealed dye adsorption on the GCE. A square-wave stripping method was developed for the determination of the dye at pH 13.0, and a linear calibration equation obtained. The reproducibility in the measurement of peak currents was confirmed from the RSD value 2.8% at 0.001?mg?mL?1 concentration. A comparison of the stripping voltammetric method with the UV-Vis spectrophotometric method was made. The determination limits are wider and the RSD value is lower in the stripping voltammetric method. The concentration of the dye present in dye effluent was determined using this method.  相似文献   

3.
Yılmaz S  Uslu B  Ozkan SA 《Talanta》2001,54(2):351-360
A voltammetric study of the oxidation of etodolac has been carried out at the glassy carbon electrode. The electrochemical oxidation of etodolac was investigated by cyclic, linear sweep, differential pulse and square wave voltammetry using glassy carbon electrode. Different parameters were tested to optimize the conditions for the determination of etodolac. The dependence of intensities of currents and potentials on pH, concentration, scan rate, nature of the buffer was investigated. For analytical purposes, a very well resolved diffusion controlled voltammetric peak was obtained in Britton-Robinson buffer at pH 2.15 for differential pulse and square wave voltammetric techniques. The linear response was obtained in the ranges of 2.10(-6)-8.10(-5) M with a detection limit of 6.8x10(-7) and 6x10(-6)-8x10(-5) M with a detection limit of 1.1x10(-6) M for differential pulse and square wave voltammetric techniques, respectively. Based on this study, simple, rapid, selective and sensitive two voltammetric methods were developed for the determination of the etodolac in tablet dosage form and human serum.  相似文献   

4.
A DNA biosensor was constructed by immobilizing DNA on a glassy carbon (GC) electrode modified with multiwall carbon nanotubes (MWNTs) dispersed in Nafion (DNA/MWNTs/GCE). The DNA-modified electrode exhibited two well-defined oxidation peaks corresponding to the guanine and adenine residues of DNA, respectively. The effects of the adsorption potential, DNA concentration and quantity of MWNTs used for DNA immobilization were investigated, as were the effects of buffer, pH and scan rate on the voltammetric behavior of DNA. Phenol, m-cresol and catechol showed noticeable inhibition towards the response of the electrode due to their interactions with DNA. These findings were used to design biosensors with linear response to these phenolic pollutants.  相似文献   

5.
Fosamprenavir is a pro-drug of the antiretroviral protease inhibitor amprenavir and is oxidizable at solid electrodes. The anodic oxidation behavior of fosamprenavir was investigated using cyclic and linear sweep voltammetry at boron-doped diamond and glassy carbon electrodes. In cyclic voltammetry, depending on pH values, fosamprenavir showed one sharp irreversible oxidation peak or wave depending on the working electrode. The mechanism of the oxidation process was discussed. The voltammetric study of some model compounds allowed elucidation of the possible oxidation mechanism of fosamprenavir. The aim of this study was to determine fosamprenavir levels in pharmaceutical formulations and biological samples by means of electrochemical methods. Using the sharp oxidation response, two voltammetric methods were described for the determination of fosamprenavir by differential pulse and square-wave voltammetry at the boron-doped diamond and glassy carbon electrodes. These two voltammetric techniques are 0.1 M H2SO4 and phosphate buffer at pH 2.0 which allow quantitation over a 4 × 10−6 to 8 × 10−5 M range using boron-doped diamond and a 1 × 10−5 to 1 × 10−4 M range using glassy carbon electrodes, respectively, in supporting electrolyte. All necessary validation parameters were investigated and calculated. These methods were successfully applied for the analysis of fosamprenavir pharmaceutical dosage forms, human serum and urine samples. The standard addition method was used in biological media using boron-doped diamond electrode. No electroactive interferences from the tablet excipients or endogenous substances from biological material were found. The results were statistically compared with those obtained through an established HPLC-UV technique; no significant differences were found between the voltammetric and HPLC methods.  相似文献   

6.
The adsorption of aromatic compounds onto activated carbons and carbon nanofibers is of considerable technical importance and beneficial in electroanalytical procedures. Here, effects due to the strong adsorption of hydroquinone, benzoquinone, and phenol onto carbon nanofiber electrodes immersed in aqueous media are reported. Carbon nanofiber materials (fiber diameter approximately 100 nm) are grown onto ceramic fiber substrates by employing an ambient pressure chemical vapour deposition process. The resulting composite electrode material is sufficiently electrically conducting due to the high carbon content and mechanically robust due to the ceramic backbone. It is shown that the voltammetric signal obtained for the one electron reduction of Ru(NH3)63+ is dominated by solution trapped in the three-dimensional electrode structure. In contrast, for the hydroquinone/benzoquinone redox system in aqueous phosphate buffer (pH 7) strong adsorption onto the carbon nanofiber material is observed. In the presence of phenol also strong adsorption is detected. In the course of the chemically irreversible oxidation of phenol in aqueous phosphate buffer (pH 7), the formation of multi-electron oxidation products related to benzoquinone is observed. The pathway for the oxidation process is attributed to (i) the high surface area of the carbon nanofiber electrode and (ii) the adsorption of intermediates.  相似文献   

7.
Tolterodine tartrate, a muscarinic receptor antagonist, was oxidized in various buffer media with different pH values using cyclic, differential pulse, and square wave voltammetric techniques on glassy carbon and boron-doped diamond electrodes. Two irreversible anodic peaks were obtained. The oxidation process of tolterodine tartrate was diffusion controlled depending on pH for both electrodes. A detailed oxidation mechanism was proposed and discussed. The dependences of the peak current and peak potentials on pH, concentration, nature of the buffer, and scan rate were investigated. A linear response between the peak current and the tolterodine tartrate concentration was obtained using differential pulse and square wave voltammetric techniques in the range of 0.4–8.0 μM for the peak at lower potential in acetate buffer at pH 5.7 and 0.4–40.0 μM for the peak at higher potential in 0.1 M H2SO4 on glassy carbon electrode and in the range of 0.4–40.0 μM in Britton-Robinson buffer at pH 11.0 on boron-doped diamond electrode. Limit of detection values varied between 0.04 and 0.13 μM for both techniques and electrodes. The repeatability, reproducibility, precision, and accuracy of the proposed methods were investigated. The recovery studies were also achieved to check selectivity, precision, and accuracy of the methods. The proposed methods were successfully applied to determine tolterodine tartrate from pharmaceutical dosage forms without any interference from inactive excipients.  相似文献   

8.
A direct voltammetric method for the rapid determination of butylated hydroxytoluene has been developed. The procedure utilizes a hydrolyzed cellulose acetate film in intimate contact with a glassy carbon electrode and square wave voltammetry. The coated electrode prevents passivation due to adsorption of polymeric oxidation products by way of a size exclusion principle. BHT solutions containing lipid-like surfactants can be analyzed without the need for frequent resurfacing of the electrode.  相似文献   

9.
The electrochemical oxidation behaviour at boron doped diamond and glassy carbon electrodes of the sulphur-containing amino acids cysteine and methionine, using cyclic and differential pulse voltammetry over a wide pH range, was compared. The oxidation reactions of these amino acids are irreversible, diffusion-controlled pH dependent processes, and occur in a complex cascade mechanism. The amino acid cysteine undergoes similar three consecutive oxidation reactions at both electrodes. The first step involves the oxidation of the sulfhydryl group with radical formation, that undergoes nucleophilic attack by water to give an intermediate species that is oxidized in the second step to cysteic acid. The oxidation of the sulfhydryl group leads to a disulfide bridge between two similar cysteine moieties forming cysteine. The subsequent oxidation of cystine occurs at a higher potential, due to the strong disulfide bridge covalent bond. The electro-oxidation of methionine at a glassy carbon electrode occurs in two steps, corresponding to the formation of sulfoxide and sulfone, involving the adsorption and protonation/deprotonation of the thiol group, followed by electrochemical oxidation. Methionine undergoes a one-step oxidation reaction at boron doped diamond electrodes due to the negligible adsorption, and the oxidation also leads to the formation of methionine sulfone.  相似文献   

10.
The oxidative behavior of viloxazine was studied at a glassy carbon electrode in different buffer systems using cyclic, differential pulse and square‐wave voltammetry. The oxidation process was shown to be diffusion‐controlled and irreversible over the studied pH. The voltammetric study of the model compounds, 2‐ethoxyanisole and morpholine, associated with quantum mechanical (DFT) calculations, allowed to elucidate the oxidation mechanism of viloxazine. An analytical method was developed for the quantification of viloxazine using an acetate pH 5 buffer solution as a supporting electrolyte. A linear response was obtained in the range 7 to 45 μM, with a detection limit of 0.8 μM. Validation parameters such as sensitivity, precision and accuracy were evaluated. The proposed method was successfully applied to the determination of viloxazine in pharmaceutical formulations and in human serum. The results were statistically compared with those obtained through an established high‐performance liquid chromatography technique, no significant differences having been found between the two methods.  相似文献   

11.
The aim of this work was to study the possibility of simultaneous voltammetric determination of some disinfectants used as components in cosmetic products. The examined compounds were: triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol), chloramine-T (N-chloro-p-toluenesulfonamide sodium salt), 4-chloro-3-methylphenol and 2-mercaptobenzothiazole. Measurements were performed using glassy carbon electrode immersed in Britton-Robinson buffers which acted as supporting electrolytes. The dependence of oxidation and reduction potentials on pH was examined using cyclic voltammetry. Britton-Robinson buffer of pH 9.9 was chosen for further studies to ensure the best separation of compounds. The resultant oxidation potentials indicate the possibility to simultaneously determine some of the disinfectants.. Oxidation reactions of mixtures containing two compounds (4-chloro-3-methylphenol and chloramine-T, 2-mercaptobenzothiazole and 4-chloro-3-methylphenol, 2-mercaptobenzothiazole and triclosan) were recorded as differential pulse voltammograms.  相似文献   

12.
Copper complex dye (C.I. Direct Blue 200) film modified electrodes have been prepared by multiple scan cyclic voltammetry. The effect of solution pH and nature of electrode material on film formation was investigated. The optimum pH for copper complex film formation on glassy carbon was found to be 1.5. The mechanism of film formation on ITO seems to be similar to that on GC surface but completely different mechanism followed with gold electrode. Cyclic voltammetric features of our modified electrodes are in consistent with a surface‐confined redox process. The voltammetric response of modified electrode was found to be depending on pH of the contacting solution. UV‐visible spectra show that the nature of copper complex dye is identical in both solution phase and after forming film on electrode. The electrocatalytic behavior of copper complex dye film modified electrode towards oxidation of dopamine, ascorbic acid and reduction of SO52? was investigated. The oxidation of dopamine and ascorbic acid occurred at less positive potential on film electrode compared to bare glassy carbon electrode. Feasibility of utilizing our modified electrode in analytical estimation of dopamine, ascorbic acid was also demonstrated.  相似文献   

13.
A composite Langmuir? Blodgett film prepared from DNA and polyaniline was deposited on the surface of a glassy carbon electrode (GCE) to give a new voltammetric sensor for the β2‐agonist salbutamol (SAL). Cyclic voltammetry and electrochemical impedance spectroscopy were employed to study the characteristic of the modified electrode. The electrochemistry of SAL at the modified electrode was investigated at pH 6.8 by cyclic voltammetry and differential pulse anodic voltammetry. The oxidation of SAL at this electrode is an adsorption‐controlled irreversible process. A sensitive electroanalytical method for determination of SAL was worked out that displays high precision and good reproducibility. The method was applied to quantify SAL in tablets with satisfactory results.  相似文献   

14.
The electro-oxidation of alternariol monomethyl ether (AME), one of the main metabolites of the Alternaria genus mycotoxins, is studied at 1-dodecanethiol (DDT)-modified gold electrodes, in acetonitrile (ACN) – aqueous phosphate buffer solutions of different pH values, by using cyclic (CV) and square-wave (SWV) voltammetries. The AME voltammetric response at the bare electrode suffers from two drawbacks: it appears at potentials close to the onset of gold oxide formation, and it is hampered by a fouling of the electrode surface due to the accumulation of oxidized products. These shortcomings are circumvented by the use of DDT-coated electrodes, since the intervening monolayer inhibits gold oxide formation and surface passivation by the electrochemical products, without affecting the oxidation kinetics of AME significantly. Diagnostic criteria based on the voltammetric peak parameters show that the electrochemical behavior of AME at the modified electrode is mainly controlled by reactant diffusion from solution, with a weak adsorption of both the mycotoxin and its oxidation products at monolayer defects. Calibration curves were constructed from the AME square-wave voltammetric response and a detection limit of 9.1 × 10−8 mol dm−3 was determined, which is about three times smaller than a previous estimate at platinum and glassy carbon electrodes, and about fifty times smaller than the limit derived from measurements carried out at a polyphenol oxidase-modified carbon paste electrode.  相似文献   

15.
《Electroanalysis》2005,17(24):2217-2223
Glassy carbon electrode modified by microcrystals of fullerene‐C60 mediates the voltammetric determination of uric acid (UA) in the presence of ascorbic acid (AA). Interference of AA was overcome owing to the ability of pretreated fullerene‐C60‐modified glassy carbon electrode. Based on its strong catalytic function towards the oxidation of UA and AA, the overlapping voltammetric response of uric acid and ascorbic acid is resolved into two well‐defined voltammetric peaks with lowered oxidation potential and enhanced oxidation currents under conditions of both linear sweep voltammetry (LSV) and Osteryoung square‐wave voltammetry (OSWV). At pH 7.2, a linear calibration graph is obtained for UA in linear sweep voltammetry over the range from 0.5 μM to 700 μM with a correlation coefficient of 0.9904 and a sensitivity of 0.0215 μA μM?1 . The detection limit (3σ) is 0.2 μM for standard solution. AA in less than four fold excess does not interfere. The sensitivity and detection limit in OSWV were found as 0.0255 μA μM?1 and 0.12 μM, for standard solution respectively. The presence of physiologically common interferents (i.e. adenine, hypoxanthine and xanthine) negligibly affects the response of UA. The fullerene‐C60‐modified electrode exhibited a stable, selective and sensitive response to uric acid in the presence of interferents.  相似文献   

16.
Here, we reveal a different way of doing the voltammetric experiments that considers the electroactive species packaged in the electrodic phase instead of dissolved in solution. In this way, it is possible to obtain voltammograms of insoluble species. In this work, the method is exemplified by obtaining voltammograms for weakly soluble coumarins but it could be extrapolated to other weakly soluble compounds. We have studied a comprehensive series of 3-acetyl-hydroxycoumarins derivatives which are insoluble in aqueous medium but capable of being trapped in a three-dimensional multi-walled carbon nanotubes (MWCNT) network. Consequently, an electrodic phase composed of an MWCNT modified glassy carbon electrode (GCE) containing the coumarin derivative is prepared. The voltammetric experiment is performed with the above electrodic phase and an aqueous medium as the solution phase. All the coumarin derivatives show one anodic peak due to the oxidation of the hydroxyl group in the phenyl ring. The oxidation peaks follow a one-electron, one-proton irreversible, pH-dependent process for all monohydroxylated compounds. The Ep values are closely dependent of the substituent effect being the 7,8-cum derivative more easily oxidized due to both the electron donor effect of neighboring hydroxyls groups and hydrogen bonding interaction between them. On the other hand, the hydroxyl of the 7-cum derivative is the most difficult to oxidize due to the electron-attracting effect of the lactone carbonyl group at position 2 and acetyl carbonyl at position 3 which is conjugated with OH at 7 positions. From the breaks in the graphs Ep versus pH, we estimate the voltammetric pKa values for all the studied coumarin derivatives.  相似文献   

17.
Electrochemical oxidation of thio/carbohydrazide and their hydrazone derivatives Benzaldehyde thiocarbohydrazone [BTCH] diacetylene thiocarbohydrazone [DATCH] have been studied in Brit-ton Robinson buffer in aqueous and nonaqueous media at a glassy carbon electrode. The effects of pH, sweep rate, concentration, temperature and surfactants have been studied. The complex bis (carbo/thiocabohydrazide) Zn(II) chloride was also subjected to voltammetric analysis in order to understand the reactivity both in free and metal bound states. The reaction conditions were optimized for the determination of above compounds in micrograms quantities by differential pulse voltammetry, analytical utility of this investigation is also highlighted.  相似文献   

18.
A fullerene-C60-modified glassy carbon electrode (GCE) is used for the simultaneous determination of adenosine and guanosine by differential pulse voltammetry. Compared to a bare glassy carbon electrode, the modified electrode exhibits an apparent shift of the oxidation potentials in the cathodic direction and a marked enhancement in the voltammetric peak current response for both the biomolecules. Linear calibration curves are obtained over the concentration range 0.5 μM-1.0 mM in 0.1 M phosphate buffer solution at pH 7.2 with a detection limit of 3.02 × 10−7 M and 1.45 × 10−7 M for individual determination of adenosine and guanosine, respectively. The interference studies showed that the fullerene-C60-modified glassy carbon electrode exhibited excellent selectivity in the presence of hypoxanthine, xanthine, uric acid and ascorbic acid. The proposed procedure was successfully applied to detect adenosine and guanosine in human blood plasma and urine, without any preliminary pre-treatment.  相似文献   

19.
In this study the application of home-made unmodified (GC) and bulk modified boron doped glassy carbon (GCB) electrodes for the voltammetric determination of the linuron was investigated. The electrodes were synthesized with a moderate temperature treatment (1000°C). Obtained results were compared with the electrochemical determination of the linuron using a commercial glassy carbon electrode (GC-Metrohm). The peak potential (E p ) of linuron oxidation in 0.1 mol dm−3 H2SO4 as electrolyte was similar for all applied electrodes: 1.31, 1.34 and 1.28 V for GCB, GC and GC-Metrohm electrodes, respectively. Potential of linuron oxidation and current density depend on the pH of supporting electrolyte. Applying GCB and GC-Metrohm electrodes the most intensive electrochemical response for linuron was obtained in strongly acidic solution (0.1 mol dm−3 H2SO4). Applying the boron doped glassy carbon electrode the broadest linear range (0.005–0.1 μmol cm−3) for the linuron determination was obtained. The results of voltammetric determination of the linuron in spiked water samples showed good correlation between added and found amounts of linuron and also are in good agreement with the results obtained by HPLC-UV method. This appears to be the first application of a boron doped glassy carbon electrode for voltammetric determination of the environmental important compounds.   相似文献   

20.
Uslu B  Topal BD  Ozkan SA 《Talanta》2008,74(5):1191-1200
The anodic behavior and determination of pefloxacin on boron-doped diamond and glassy carbon electrodes were investigated using cyclic, linear sweep, differential pulse and square wave voltammetric techniques. In cyclic voltammetry, pefloxacin shows one main irreversible oxidation peak and additional one irreversible ill-defined wave depending on pH values for both electrodes. The results indicate that the process of pefloxacin is irreversible and diffusion controlled on boron-doped diamond electrode and irreversible but adsorption controlled on glassy carbon electrode. The peak current is found to be linear over the range of concentration 2 × 10−6 to 2 × 10−4 M in 0.5 M H2SO4 at about +1.20 V (versus Ag/AgCl) for differential pulse and square wave voltammetric technique using boron-doped diamond electrode. The repeatability, reproducibility, precision and accuracy of the methods in all media were investigated. Selectivity, precision and accuracy of the developed methods were also checked by recovery studies. The procedures were successfully applied to the determination of the drug in pharmaceutical dosage forms and humans serum samples with good recovery results. No electroactive interferences from the excipients and endogenous substances were found in the pharmaceutical dosage forms and biological samples, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号