首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vertex packing problem for a given graph is to find a maximum number of vertices no two of which are joined by an edge. The weighted version of this problem is to find a vertex packingP such that the sum of the individual vertex weights is maximum. LetG be the family of graphs whose longest odd cycle is of length not greater than 2K + 1, whereK is any non-negative integer independent of the number (denoted byn) of vertices in the graph. We present an O(n 2K+1) algorithm for the maximum weighted vertex packing problem for graphs inG 1. A by-product of this algorithm is an algorithm for piecing together maximum weighted packings on blocks to find maximum weighted packings on graphs that contain more than one block. We also give an O(n 2K+3) algorithm for testing membership inG This work was supported by NSF grant ENG75-00568 to Cornell University. Some of the results of this paper have appeared in Hsu's unpublished Ph.D. dissertation [9].  相似文献   

2.
In this paper, parallel algorithms are presented for solving some problems on permutation graphs. The coloring problem is solved inO(log2 n) time usingO(n 3/logn) processors on the CREW PRAM, orO(logn) time usingO(n 3) processors on the CRCW PRAM. The weighted clique problem, the weighted independent set problem, the cliques cover problem, and the maximal layers problem are all solved with the same complexities. We can also show that the longest common subsequence problem belongs to the class NC.  相似文献   

3.
IfGis a claw-free graph, then there is a graphcl(G) such that (i) Gis a spanning subgraph ofcl(G), (ii) cl(G) is a line graph of a triangle-free graph, and (iii) the length of a longest cycle inGand incl(G) is the same. A sufficient condition for hamiltonicity in claw-free graphs, the equivalence of some conjectures on hamiltonicity in 2-tough graphs and the hamiltonicity of 7-connected claw-free graphs are obtained as corollaries.  相似文献   

4.
The clique graph K(G) of a graph is the intersection graph of maximal cliques of G. The iterated clique graph Kn(G) is inductively defined as K(Kn?1(G)) and K1(G) = K(G). Let the diameter diam(G) be the greatest distance between all pairs of vertices of G. We show that diam(Kn(G)) = diam(G) — n if G is a connected chordal graph and n ≤ diam(G). This generalizes a similar result for time graphs by Bruce Hedman.  相似文献   

5.
 We prove that for every c>0 there exists a constant K = K(c) such that every graph G with n vertices and minimum degree at least c n contains a cycle of length t for every even t in the interval [4,e c(G) − K] and every odd t in the interval [K,o c(G) − K], where e c(G) and o c(G) denote the length of the longest even cycle in G and the longest odd cycle in G respectively. We also give a rough estimate of the magnitude of K. Received: July 5, 2000 Final version received: April 17, 2002 2000 Mathematics Subject Classification. 05C38  相似文献   

6.
The clique graph K(G) of a simple graph G is the intersection graph of its maximal complete subgraphs, and we define iterated clique graphs by K0(G)=G, Kn+1(G)=K(Kn(G)). We say that two graphs are homotopy equivalent if their simplicial complexes of complete subgraphs are so. From known results, it can be easily inferred that Kn(G) is homotopy equivalent to G for every n if G belongs to the class of clique-Helly graphs or to the class of dismantlable graphs. However, in both of these cases the collection of iterated clique graphs is finite up to isomorphism. In this paper, we show two infinite classes of clique-divergent graphs that satisfy G?Kn(G) for all n, moreover Kn(G) and G are simple-homotopy equivalent. We provide some results on simple-homotopy type that are of independent interest.  相似文献   

7.
LetG o be a non compact real semisimple Lie group with finite center, and letU U(g) K denote the centralizer inU U(g) of a maximal compact subgroupK o ofG o. To study the algebraU U(g) K , B. Kostant suggested to consider the projection mapP:U U(g)→U(k)⊗U(a), associated to an Iwasawa decompositionG o=K o A o N o ofG o, adapted toK o. WhenP is restricted toU U(g) K J. Lepowsky showed thatP becomes an injective anti-homomorphism ofU U(g) K intoU(k) M U(a). HereU(k) M denotes the centralizer ofM o inU(k),M o being the centralizer ofA o inK o. To pursue this idea further it is necessary to have a good characterization of the image ofU U(g) K inU(k)M×U(a). In this paper we describe such image whenG o=SO(n,1)e or SU(n,1). This is acomplished by establishing a (minimal) set of equations satisfied by the elements in the image ofU U(g) K , and then proving that they are enough to characterize such image. These equations are derived on one hand from the intertwining relations among the principal series representations ofG o given by the Kunze-Stein interwining operators, and on the other hand from certain imbeddings among Verma modules. This approach should prove to be useful to attack the general case. Supported in part by Fundación Antorchas  相似文献   

8.
Let G(n, M) be a graph chosen at random from the family of all labelled graphs with n vertices and M(n) = 0.5n + s(n) edges, where s3(n)n?2→∞ but s(n) = o(n). We find the limit distribution of the length of shortest cycle contained in the largest component of G(n, M), as well as of the longest cycle outside it. We also describe the block structure of G(n, M) and derive from this result the limit probability that G(n, M) contains a cycle with a diagonal. Finally, we show that the probability tending to 1 as n-→∞ the length of the longest cycle in G(n, M) is of the order s2(n)/n.  相似文献   

9.
Optimally Cutting a Surface into a Disk   总被引:1,自引:0,他引:1  
We consider the problem of cutting a subset of the edges of a polyhedral manifold surface, possibly with boundary, to obtain a single topological disk, minimizing either the total number of cut edges or their total length. We show that this problem is NP-hard in general, even for manifolds without boundary and for punctured spheres. We also describe an algorithm with running time n O(g+k), where n is the combinatorial complexity, g is the genus, and k is the number of boundary components of the input surface. Finally, we describe a greedy algorithm that outputs a O(log2 g)-approximation of the minimum cut graph in O(g 2 n log n) time.  相似文献   

10.
A clique-transversal of a graph G is a subset of vertices intersecting all the cliques of G. It is NP-hard to determine the minimum cardinality τ c of a clique-transversal of G. In this work, first we propose an algorithm for determining this parameter for a general graph, which runs in polynomial time, for fixed τ c . This algorithm is employed for finding the minimum cardinality clique-transversal of [`(3K2)]\overline{3K_{2}} -free circular-arc graphs in O(n 4) time. Further we describe an algorithm for determining τ c of a Helly circular-arc graph in O(n) time. This represents an improvement over an existing algorithm by Guruswami and Pandu Rangan which requires O(n 2) time. Finally, the last proposed algorithm is modified, so as to solve the weighted version of the corresponding problem, in O(n 2) time.  相似文献   

11.
Let G be a connected plane graph, D(G) be the corresponding link diagram via medial construction, and μ(D(G)) be the number of components of the link diagram D(G). In this paper, we first provide an elementary proof that μ(D(G))≤n(G)+1, where n(G) is the nullity of G. Then we lay emphasis on the extremal graphs, i.e. the graphs with μ(D(G))=n(G)+1. An algorithm is given firstly to judge whether a graph is extremal or not, then we prove that all extremal graphs can be obtained from K1 by applying two graph operations repeatedly. We also present a dual characterization of extremal graphs and finally we provide a simple criterion on structures of bridgeless extremal graphs.  相似文献   

12.
What is the maximum possible number, f3(n), of vectors of length n over {0,1,2} such that the Hamming distance between every two is even? What is the maximum possible number, g3(n), of vectors in {0,1,2}n such that the Hamming distance between every two is odd? We investigate these questions, and more general ones, by studying Xor powers of graphs, focusing on their independence number and clique number, and by introducing two new parameters of a graph G. Both parameters denote limits of series of either clique numbers or independence numbers of the Xor powers of G (normalized appropriately), and while both limits exist, one of the series grows exponentially as the power tends to infinity, while the other grows linearly. As a special case, it follows that f3(n) = Θ(2n) whereas g3(n)=Θ(n). * Research supported in part by a USA-Israeli BSF grant, by the Israel Science Foundation and by the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University. † Research partially supported by a Charles Clore Foundation Fellowship.  相似文献   

13.
Acoreof a graphGis a pathPinGthat is central with respect to the property of minimizingd(P)=∑vV(G)d(v, P), whered(v, P) is the distance from vertexvto pathP. This paper presents efficient algorithms for finding a core of a tree with a specified length. The sequential algorithm runs inO(n log n) time, wherenis the size of the tree. The parallel algorithm runs inO(log2n) time usingO(n) processors on an EREW PRAM model.  相似文献   

14.
We consider a canonical Ramsey type problem. An edge‐coloring of a graph is called m‐good if each color appears at most m times at each vertex. Fixing a graph G and a positive integer m, let f(m, G) denote the smallest n such that every m‐good edge‐coloring of Kn yields a properly edge‐colored copy of G, and let g(m, G) denote the smallest n such that every m‐good edge‐coloring of Kn yields a rainbow copy of G. We give bounds on f(m, G) and g(m, G). For complete graphs G = Kt, we have c1mt2/ln t ≤ f(m, Kt) ≤ c2mt2, and cmt3/ln t ≤ g(m, Kt) ≤ cmt3/ln t, where c1, c2, c, c are absolute constants. We also give bounds on f(m, G) and g(m, G) for general graphs G in terms of degrees in G. In particular, we show that for fixed m and d, and all sufficiently large n compared to m and d, f(m, G) = n for all graphs G with n vertices and maximum degree at most d. © 2003 Wiley Periodicals, Inc. Random Struct. Alg., 2003  相似文献   

15.
The odd girth of a graph G is the length of a shortest odd cycle in G. Let d(n, g) denote the largest k such that there exists a k-regular graph of order n and odd girth g. It is shown that dn, g ≥ 2|n/g≥ if n ≥ 2g. As a consequence, we prove a conjecture of Pullman and Wormald, which says that there exists a 2j-regular graph of order n and odd girth g if and only if ngj, where g ≥ 5 is odd and j ≥ 2. A different variation of the problem is also discussed.  相似文献   

16.
For a graph G, let g(G) and σg(G) denote, respectively, the girth of G and the number of cycles of length g(G) in G. In this paper, we first obtain an upper bound for σg(G) and determine the structure of a 2-connected graph G when σg(G) attains the bound. These extremal graphs are then more-or-less classified, but one case leads to an unsolved problem. The structural results are finally applied to show that certain families of graphs are chromatically unique.  相似文献   

17.
It is shown that a connected graph G spans an eulerian graph if and only if G is not spanned by an odd complete bigraph K(2m + 1, 2n + 1). A disconnected graph spans an eulerian graph if and only if it is not the union of the trivial graph with a complete graph of odd order. Exact formulas are obtained for the number of lines which must be added to such graphs in order to get eulerian graphs.  相似文献   

18.
Maurizio Brunetti 《K-Theory》2001,24(4):385-395
Let P be a non-Abelian finite p-group, p odd, with cyclic maximal subgroups, and let K(n)*(–) denote the nth Morava K-theory at p. In this paper we determine the algebras K(n)*(BP) and K(n)*(BG) for all groups G with Sylow p-subgroups isomorphic to P, giving further evidence for the fact that Morava K-theory as an invariant of finite groups, is finer than ordinary modp cohomology. Mathematics Subject Classifications (2000): 55N20, 55N22.  相似文献   

19.
The geodetic numbers of graphs and digraphs   总被引:1,自引:0,他引:1  
For every two vertices u and v in a graph G,a u-v geodesic is a shortest path between u and v.Let I(u,v)denote the set of all vertices lying on a u-v geodesic.For a vertex subset S,let I(S) denote the union of all I(u,v)for u,v∈S.The geodetic number g(G)of a graph G is the minimum cardinality of a set S with I(S)=V(G).For a digraph D,there is analogous terminology for the geodetic number g(D).The geodetic spectrum of a graph G,denoted by S(G),is the set of geodetic numbers of all orientations of graph G.The lower geodetic number is g~-(G)=minS(G)and the upper geodetic number is g~ (G)=maxS(G).The main purpose of this paper is to study the relations among g(G),g~-(G)and g~ (G)for connected graphs G.In addition,a sufficient and necessary condition for the equality of g(G)and g(G×K_2)is presented,which improves a result of Chartrand,Harary and Zhang.  相似文献   

20.
Let G be a connected claw-free graph on n vertices. Let ς3(G) be the minimum degree sum among triples of independent vertices in G. It is proved that if ς3(G) ≥ n − 3 then G is traceable or else G is one of graphs Gn each of which comprises three disjoint nontrivial complete graphs joined together by three additional edges which induce a triangle K3. Moreover, it is shown that for any integer k ≥ 4 there exists a positive integer ν(k) such that if ς3(G) ≥ nk, n > ν(k) and G is non-traceable, then G is a factor of a graph Gn. Consequently, the problem HAMILTONIAN PATH restricted to claw-free graphs G = (V, E) (which is known to be NP-complete) has linear time complexity O(|E|) provided that ς3(G) ≥ . This contrasts sharply with known results on NP-completeness among dense graphs. © 1998 John Wiley & Sons, Inc. J Graph Theory 27: 75–86, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号