首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Functionsp(x) andq(x) for which the Dirac operator $$Dy = \left( {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ { - 1} \\ \end{array} } & {\begin{array}{*{20}c} 1 \\ 0 \\ \end{array} } \\ \end{array} } \right)\frac{{dy}}{{dx}} + \left( {\begin{array}{*{20}c} {p(x) q(x)} \\ {q(x) - p(x)} \\ \end{array} } \right)y = \lambda y, y = \left( {\begin{array}{*{20}c} {y_1 } \\ {y_2 } \\ \end{array} } \right), y_1 (0) = 0,$$ has a countable number of eigenvalues in the continuous spectrum are constructed.  相似文献   

2.
We consider an eigenvalue problem for a system on [0, 1]: $$\left\{ {\begin{array}{*{20}l} {\left[ {\left( {\begin{array}{*{20}c} 0 & 1 \\ 1 & 0 \\ \end{array} } \right)\frac{{\text{d}}} {{{\text{d}}x}} + \left( {\begin{array}{*{20}c} {p_{11} (x)} & {p_{12} (x)} \\ {p_{21} (x)} & {p_{22} (x)} \\ \end{array} } \right)} \right]\left( {\begin{array}{*{20}c} {\varphi ^{(1)} (x)} \\ {\varphi ^{(2)} (x)} \\ \end{array} } \right) = \lambda \left( {\begin{array}{*{20}c} {\varphi ^{(1)} (x)} \\ {\varphi ^{(1)} (x)} \\ \end{array} } \right)} \\ {\varphi ^{(2)} (0)\cosh \mu - \varphi ^{(1)} (0)\sinh \mu = \varphi ^{(2)} (1)\cosh \nu + \varphi ^{(1)} (1)\sinh \nu = 0} \\ \end{array} } \right.$$ with constants $$\mu ,\nu \in \mathbb{C}.$$ Under the assumption that p21, p22 are known, we prove a uniqueness theorem and provide a reconstruction formula for p11 and p12 from the spectral characteristics consisting of one spectrum and the associated norming constants.  相似文献   

3.
Let F n be the nth Fibonacci number. The Fibonomial coefficients \(\left[ {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right]_F\) are defined for nk > 0 as follows $$\left[ {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right]_F = \frac{{F_n F_{n - 1} \cdots F_{n - k + 1} }} {{F_1 F_2 \cdots F_k }},$$ with \(\left[ {\begin{array}{*{20}c} n \\ 0 \\ \end{array} } \right]_F = 1\) and \(\left[ {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right]_F = 0\) . In this paper, we shall provide several identities among Fibonomial coefficients. In particular, we prove that $$\sum\limits_{j = 0}^{4l + 1} {\operatorname{sgn} (2l - j)\left[ {\begin{array}{*{20}c} {4l + 1} \\ j \\ \end{array} } \right]_F F_{n - j} = \frac{{F_{2l - 1} }} {{F_{4l + 1} }}\left[ {\begin{array}{*{20}c} {4l + 1} \\ {2l} \\ \end{array} } \right]_F F_{n - 4l - 1} ,}$$ holds for all non-negative integers n and l.  相似文献   

4.
Let X and Y be fences of size n and m, respectively and n, m be either both even or both odd integers (i.e., |m-n| is an even integer). Let \(r = \left\lfloor {{{(n - 1)} \mathord{\left/ {\vphantom {{(n - 1)} 2}} \right. \kern-0em} 2}} \right\rfloor\) . If 1<n<-m then there are \(a_{n,m} = (m + 1)2^{n - 2} - 2(n - 1)(\begin{array}{*{20}c} {n - 2} \\ r \\ \end{array} )\) of strictly increasing mappings of X to Y. If 1<-m<-n<-2m and s=1/2(n?m) then there are a n,m+b n,m+c n of such mappings, where $$\begin{gathered} b_{n,m} = 8\sum\limits_{i = 0}^{s - 2} {\left( {\begin{array}{*{20}c} {m + 2i + 1} \\ l \\ \end{array} } \right)4^{s - 2 - 1} } \hfill \\ {\text{ }}c_n = \left\{ \begin{gathered} \left( {\begin{array}{*{20}c} {n - 1} \\ {s - 1} \\ \end{array} } \right){\text{ if both }}n,m{\text{ are even;}} \hfill \\ {\text{ 0 if both }}n,m{\text{ are odd}}{\text{.}} \hfill \\ \end{gathered} \right. \hfill \\ \end{gathered} $$   相似文献   

5.
LetH r be anr-uniform hypergraph. Letg=g(n;H r ) be the minimal integer so that anyr-uniform hypergraph onn vertices and more thang edges contains a subgraph isomorphic toH r . Lete =f(n;H r ,εn) denote the minimal integer such that everyr-uniform hypergraph onn vertices with more thane edges and with no independent set ofεn vertices contains a subgraph isomorphic toH r . We show that ifr>2 andH r is e.g. a complete graph then $$\mathop {\lim }\limits_{\varepsilon \to 0} \mathop {\lim }\limits_{n \to \infty } \left( {\begin{array}{*{20}c} n \\ r \\ \end{array} } \right)^{ - 1} f(n;H^r ,\varepsilon n) = \mathop {\lim }\limits_{n \to \infty } \left( {\begin{array}{*{20}c} n \\ r \\ \end{array} } \right)^{ - 1} g(n;H^r )$$ while for someH r with \(\mathop {\lim }\limits_{n \to \infty } \left( {\begin{array}{*{20}c} n \\ r \\ \end{array} } \right)^{ - 1} g(n;H^r ) \ne 0\) $$\mathop {\lim }\limits_{\varepsilon \to 0} \mathop {\lim }\limits_{n \to \infty } \left( {\begin{array}{*{20}c} n \\ r \\ \end{array} } \right)^{ - 1} f(n;H^r ,\varepsilon n) = 0$$ . This is in strong contrast with the situation in caser=2. Some other theorems and many unsolved problems are stated.  相似文献   

6.
Letn>1. The number of all strictly increasing selfmappings of a 2n-element crown is . The number of all order-preserving selfmappings of a 2n-element crown is
  相似文献   

7.
An efficient way to evaluate \(\sum\limits_{j = k}^n {( - 1)^{j - k - 1} \left( {\begin{array}{*{20}c} n \\ j \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {j - 1} \\ {k - 1} \\ \end{array} } \right)} \ln j\) is described. This sum, connected with the logarithmic Weibull distribution, is hard to evaluate directly, because the binomial coefficients become quite large, and then the alternating signs cause severe loss of significant figures. By converting the sum to an integral, we avoid this difficulty.  相似文献   

8.
We present series representations for some mathematical constants, like γ, π, log 2, ζ(3). In particular, we prove that the following representation for Euler’s constant is valid: $$ \gamma = \sum\limits_{r = 1}^\infty {\sum\limits_{s = 1}^r {\left( {\begin{array}{*{20}c} {r - 1} \\ {s - 1} \\ \end{array} } \right)( - 1)^{r - s} 2^s \left( {\frac{1} {s} + \log \frac{s} {{s + 1}}} \right)} } . $$   相似文献   

9.
We consider the second-order matrix differential operator $$N = \left( {\begin{array}{*{20}c} { - \frac{d}{{dx}}\left( {p_0 \frac{d}{{dx}}} \right) + p_1 } \\ r \\ \end{array} \begin{array}{*{20}c} r \\ { - \frac{d}{{dx}}\left( {q_0 \frac{d}{{dx}}} \right) + q_1 } \\ \end{array} } \right)$$ determined by the expression Nφ, [0 ?x < ∞), where \(\phi = \left( {\begin{array}{*{20}c} U \\ V \\ \end{array} } \right)\) . It has been proved that if p0, q0, p1, q1,r satisfy certain conditions, then N is in the limit point case at ∞. It has been also shown that certain differential operators in the Hilbert space L2 of vectors, generated by the operator N, are symmetric and self-adjoint.  相似文献   

10.
Ifμ is a positive measure, andA 2, ...,A n are measurable sets, the sequencesS 0, ...,S n andP [0], ...,P [n] are related by the inclusion-exclusion equalities. Inequalities among theS i are based on the obviousP [k]≧0. Letting =the average average measure of the intersection ofk of the setsA i , it is shown that (−1) k Δ k M i ≧0 fori+kn. The casek=1 yields Fréchet’s inequalities, andk=2 yields Gumbel’s and K. L. Chung’s inequalities. Generalizations are given involvingk-th order divided differences. Using convexity arguments, it is shown that forS 0=1, whenS 1N−1, and for 1≦k<Nn andv=0, 1, .... Asymptotic results asn → ∞ are obtained. In particular it is shown that for fixedN, for all sequencesM 0, ...,M n of sufficiently large length if and only if for 0<t<1.  相似文献   

11.
It is known that if there exist perfecte-codes or tight 2e-designs in a Hamming schemeH(n, q), then all the zeros of the Lloyd polynomial $$F_e \left( x \right) = \sum\limits_{i = 0}^e {\left( { - q} \right)^i \left( {q - 1} \right)^{e - i} } \left( {\begin{array}{*{20}c} {n - i - 1} \\ {e - i} \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {x - 1} \\ i \\ \end{array} } \right)$$ are integers in the interval [1,n]. With some results of Best, we show that ife ≥ 3,n ≥ e + 1, andq ≥ 3, thenF e (x) has a nonintegral zero. Therefore there exist no nontrivial perfecte-codes and tight 2e-designs inH(n,q) ife ≥ 3 andq ≥ 3.  相似文献   

12.
We show that the number of elements in FM(1+1+n), the modular lattice freely generated by two single elements and an n-element chain, is 1 $$\frac{1}{{6\sqrt 2 }}\sum\limits_{k = 0}^{n + 1} {\left[ {2\left( {\begin{array}{*{20}c} {2k} \\ k \\ \end{array} } \right) - \left( {\begin{array}{*{20}c} {2k} \\ {k - 2} \\ \end{array} } \right)} \right]} \left( {\lambda _1^{n - k + 2} - \lambda _2^{n - k + 2} } \right) - 2$$ , where \(\lambda _{1,2} = {{\left( {4 \pm 3\sqrt 2 } \right)} \mathord{\left/ {\vphantom {{\left( {4 \pm 3\sqrt 2 } \right)} 2}} \right. \kern-0em} 2}\) .  相似文献   

13.
The forms of all semisymmetric, branching, multidimensional measures of inset information on open domains are determined. This is done for both the complete and the possibly incomplete partition cases. The key to these results is to find the general solution of the functional equation
  相似文献   

14.
In this paper, we consider the stochastic Dirac operatoron a polish space (Ω,β, P). The relation between the Lyapunov index, rotation number andthe spectrum of L_ω is discussed. The existence of the Lyapunov index and rotation number isshown. By using the W-T functions and W-function we prove the theorems for L_ω as in Kotani[1], [2] for Schrodinger operatorB, and in Johnson [5] for Dirac operators on compact space.  相似文献   

15.
We consider the question of evaluating the normalizing multiplier $$\gamma _{n,k} = \frac{1}{\pi }\int_{ - \pi }^\pi {\left( {\frac{{sin\tfrac{{nt}}{2}}}{{sin\tfrac{t}{2}}}} \right)^{2k} dt} $$ for the generalized Jackson kernel J n,k (t). We obtain the explicit formula $$\gamma _{n,k} = 2\sum\limits_{p = 0}^{\left[ {k - \tfrac{k}{n}} \right]} {( - 1)\left( {\begin{array}{*{20}c} {2k} \\ p \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {k(n + 1) - np - 1} \\ {k(n - 1) - np} \\ \end{array} } \right)} $$ and the representation $$\gamma _{n,k} = \sqrt {\frac{{24}}{\pi }} \cdot \frac{{(n - 1)^{2k - 1} }}{{\sqrt {2k - 1} }}\left[ {1\frac{1}{8} \cdot \frac{1}{{2k - 1}} + \omega (n,k)} \right],$$ , where $$\left| {\omega (n,k)} \right| < \frac{4}{{(2k - 1)\sqrt {ln(2k - 1)} }} + \sqrt {12\pi } \cdot \frac{{k^{\tfrac{3}{2}} }}{{n - 1}}\left( {1 + \frac{1}{{n - 1}}} \right)^{2k - 2} .$$ .  相似文献   

16.
The following matrices are considered $$A_k = \left( {\begin{array}{*{20}c} k \\ 1 \\ \end{array} \begin{array}{*{20}c} 2 \\ k \\ \end{array} } \right), B_k \left( {\begin{array}{*{20}c} {k - 1} \\ 1 \\ \end{array} \begin{array}{*{20}c} 1 \\ {k + 1} \\ \end{array} } \right),k \in \mathbb{N},$$ which are strong shift equivalent in the sense ofWilliams [7]. In case \(k + \sqrt 2 \) is a prime number of the algebraic field \(\mathbb{Q}(\sqrt 2 )\) matrices are defined which determine the possible choices of rank two matrices connectingA k andB k in the sense of strong shift equivalence. A complete list of all these matrices is given.  相似文献   

17.
Let be a triangular matrix algebra, uhere k is an algebraically closed field, B is the path algebra of an oriented Dynkin diagram of type E6 or E7 or E8 and M is a finite dimensional k-B-bimodule. The aim of this paper is to determine the representation type of A for any orientation of the Dynkin diagram and for any indecomposable B-module M. This classification is obtained by comparing the representation types of the algebras and using the theory of tilting modules.  相似文献   

18.
N. Ruškuc 《Semigroup Forum》1995,51(1):319-333
Some presentations for the semigroups of all 2×2 matrices and all 2×2 matrices of determinant 0 or 1 over the field GF(p) (p prime) are given. In particular, if <a, b, c‖ R> is any (semigroup) presentation for the general linear group in terms of generators $$A = \left( {\begin{array}{*{20}c} 1 & 0 \\ 1 & 1 \\ \end{array} } \right),B = \left( {\begin{array}{*{20}c} 1 & 1 \\ 0 & 1 \\ \end{array} } \right),C = \left( {\begin{array}{*{20}c} 1 & 0 \\ 0 & \xi \\ \end{array} } \right),$$ where ζ is a primitive root of 1 modulop, then the presentation $$\langle a,b,c,t|R,t^2 = ct = tc = t,tba^{p - 1} t = 0,b^{\xi - 1} atb = a^{\xi - 1} tb^\xi a^{1 - \xi - 1} \rangle $$ defines the semigroup of all 2×2 matrices over GF (2,p) in terms of generatorsA, B, C and $$T = \left( {\begin{array}{*{20}c} 1 & 0 \\ 0 & 0 \\ \end{array} } \right).$$ Generating sets and ranks of various matrix semigroups are also found.  相似文献   

19.
For integers b and c the generalized central trinomial coefficient Tn(b,c)denotes the coefficient of xnin the expansion of(x2+bx+c)n.Those Tn=Tn(1,1)(n=0,1,2,...)are the usual central trinomial coefficients,and Tn(3,2)coincides with the Delannoy number Dn=n k=0n k n+k k in combinatorics.We investigate congruences involving generalized central trinomial coefficients systematically.Here are some typical results:For each n=1,2,3,...,we have n-1k=0(2k+1)Tk(b,c)2(b2-4c)n-1-k≡0(mod n2)and in particular n2|n-1k=0(2k+1)D2k;if p is an odd prime then p-1k=0T2k≡-1p(mod p)and p-1k=0D2k≡2p(mod p),where(-)denotes the Legendre symbol.We also raise several conjectures some of which involve parameters in the representations of primes by certain binary quadratic forms.  相似文献   

20.
Enumerating rooted simple planar maps   总被引:1,自引:0,他引:1  
The main purpose of this paper is to find the number of combinatorially distinct rooted simpleplanar maps,i.e.,maps having no loops and no multi-edges,with the edge number given.We haveobtained the following results.1.The number of rooted boundary loopless planar [m,2]-maps.i.e.,maps in which there areno loops on the boundaries of the outer faces,and the edge number is m,the number of edges on theouter face boundaries is 2,is(?)for m≥1.G_0~N=0.2.The number of rooted loopless planar [m,2]-maps is(?)3.The number of rooted simple planar maps with m edges H_m~s satisfies the following recursiveformula:(?)where H_m~(NL) is the number of rooted loopless planar maps with m edges given in [2].4.In addition,γ(i,m),i≥1,are determined by(?)for m≥i.γ(i,j)=0,when i>j.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号