首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This letter concerns the paper "Analysis of the time-reversal operator for scatterers of finite size" [J. Acoust. Soc. Am. 112, 411-419 (2002)]. The number of possible eigenvalues and eigenfunctions of the time reversal operator for a finite sphere given in the paper is much more than the correct number, which is proven to be the total number of multipole moments induced inside the finite sphere.  相似文献   

2.
A new application of time-reversal processing of wave scattering data permits characterization of scatterers by analyzing the number and nature of the singular functions (or eigenfunctions) associated with individual scatterers when they have multiple contributions from monopole, dipole, and/or quadrupole scattering terms. We discuss acoustic, elastic, and electromagnetic scattering problems for low frequencies. Specific examples for electromagnetic scattering from one of a number of small conducting spheres show that each sphere can have up to six distinct time-reversal eigenfunctions associated with it.  相似文献   

3.
Recently, it was shown that the time-reversal operator for a single, small spherical scatterer could have up to four distinguishable eigenstates [Chambers and Gautesen, J. Acoust. Soc. Am. 109, 2616-2624 (2001)]. In this paper, that analysis is generalized for scatterers of arbitrary shape and larger size. It is shown that the time-reversal operator may have an indefinitely large number of distinguishable eigenstates, with the exact number depending on the nature of the scatterer and the geometry of the time-reversal mirror. In addition, the case of a multiple number of well-separated scatterers is investigated, with the result that the total spectrum is the direct combination of the eigenstates associated with each scatterer. As an example, the singular value spectrum of the time-reversal operator for a linear array is calculated explicitly for bubbles and hard rubber spheres of finite size. Both resonance peaks and apparent crossing points can be observed in the spectrum as the size of the scatterer increases.  相似文献   

4.
Quantum systems whose classical counterpart have ergodic dynamics are quantum ergodic in the sense that almost all eigenstates are uniformly distributed in phase space. In contrast, when the classical dynamics is integrable, there is concentration of eigenfunctions on invariant structures in phase space. In this paper we study eigenfunction statistics for the Laplacian perturbed by a delta-potential (also known as a point scatterer) on a flat torus, a popular model used to study the transition between integrability and chaos in quantum mechanics. The eigenfunctions of this operator consist of eigenfunctions of the Laplacian which vanish at the scatterer, and new, or perturbed, eigenfunctions. We show that almost all of the perturbed eigenfunctions are uniformly distributed in configuration space.  相似文献   

5.
The scattering efficiencies of hard and soft cylindrical scatterers are compared using the Novikov-Grinevich-Manakov functional algorithm designed to reconstruct two-dimensional scatterers. The existence of a rigid relationship between the amplitude and phase of the wave scattered by a quasi- point-like scatterer and by scatterers with small wave sizes in the form of a soft cylinder, a soft sphere, and an air bubble in a liquid is confirmed by numerical simulations.  相似文献   

6.
The interaction between transverse domain walls is calculated analytically using a multipole expansion up to third order. Starting from an analytical expression for the magnetization in the wall, the monopole, dipole, and quadrupole moments are derived and their impact on the interaction is investigated using the surface and volume charges. The surface charges are important for the dipole moment while the volume charges constitute the monopole and quadrupole moments. For domain walls that are situated in different wires it is found that there is a strong deviation from the interaction of two monopoles. This deviation is caused by the interaction of the monopole of the wall in the first wire with the dipole of the wall in the second wire and vice versa. The dipole-dipole and the quadrupole-monopole interactions are found to be also of considerable size and non-negligible. A comparison with micromagnetic simulations shows a good agreement.  相似文献   

7.
Sahin S  Gbur G  Korotkova O 《Optics letters》2011,36(20):3957-3959
A three-dimensional multi-Gaussian function, being a finite sum of Gaussian functions, is adopted for modeling of a spherically symmetric scatterer with a semisoft boundary, i.e. such that has continuous and adjustable drop in the index of refraction. A Gaussian sphere and a hard sphere are the two limiting cases when the number of terms in multi-Gaussian distribution is one and infinity, respectively. The effect of the boundary's softness on the intensity distribution of the scattered wave is revealed. The generalization of the model to random scatterers with semisoft boundaries is also outlined.  相似文献   

8.
Motivated by problems of mathematical physics (quantum chaos) questions of equidistribution of eigenfunctions of the Laplace operator on a Riemannian manifold have been studied by several authors. We consider here, in analogy with arithmetic hyperbolic surfaces, orthonormal bases of eigenfunctions of the Laplace operator on the two dimensional unit sphere which are also eigenfunctions of an algebra of Hecke operators which act on these spherical harmonics. We formulate an analogue of the equidistribution of mass conjecture for these eigenfunctions as well as of the conjecture that their moments tend to moments of the Gaussian as the eigenvalue increases. For such orthonormal bases we show that these conjectures are related to the analytic properties of degree eight arithmetic L-functions associated to triples of eigenfunctions. Moreover we establish the conjecture for the third moments and give a conditional (on standard analytic conjectures about these arithmetic L-functions) proof of the equidistribution of mass conjecture. Electronic Supplementary Material: Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00220-003-0922-5Part of this work was done at the Institute for Advanced Study, Princeton, NJ.  相似文献   

9.
The iterative time reversal processing represents a high speed and easy way to self-focus on the strongest scatterer in a multitarget medium. However, finding weaker scatterers is a more difficult task that can be solved by computing the eigenvalue and eigenvector decomposition of the time reversal operator, the so-called DORT method. Nevertheless, as it requires the measurement of the complete interelements response matrix and time-consuming computation, the separation of multiple targets may not be achieved in real time. In this study, a new real time technique is proposed for multitarget selective focusing that does not require the experimental acquisition of the time reversal operator. This technique achieves the operator decomposition using a particular sequence of filtered waves propagation instead of computational power. Due to its simplicity of implementation, this iterative process can be achieved in real time. This high speed selective focusing is experimentally demonstrated by detecting targets through a heterogeneous medium and in a speckle environment. A theoretical analysis compares this technique to the DORT formalism.  相似文献   

10.
J DATTA  P K BERA 《Pramana》2011,76(1):47-66
An approximation method based on the iterative technique is developed within the framework of linear delta expansion (LDE) technique for the eigenvalues and eigenfunctions of the one-dimensional and three-dimensional realistic physical problems. This technique allows us to obtain the coefficient in the perturbation series for the eigenfunctions and the eigenvalues directly by knowing the eigenfunctions and the eigenvalues of the unperturbed problems in quantum mechanics. Examples are presented to support this. Hence, the LDE technique can be used for nonperturbative as well as perturbative systems to find approximate solutions of eigenvalue problems.  相似文献   

11.
Recent research has shown that coupling between point scatterers in a disordered medium by longitudinal electromagnetic fields is harmful for Anderson localization of light. However, it has been unclear if this feature is generic or specific for point scatterers. The present work demonstrates that the intensity of longitudinal field outside a spherical dielectric scatterer illuminated by monochromatic light exhibits a complicated, nonmonotonous dependence on the scatterer size. Moreover, the intensity is reduced for a hollow sphere, whereas one can adjust the parameters of a coated sphere to obtain a relatively low longitudinal field together with a strong resonant scattering efficiency. Therefore, random arrangements of structured (hollow or coated) spheres may be promising three‐dimensional disordered materials for reaching Anderson localization of light.  相似文献   

12.
In this paper a gauge theory with a classical solution corresponding to a magnetic monopole is quantised. By careful handling of the zero frequency modes it is shown that the monopole is capable of absorbing both momentum and charge. The angular momentum operator is considered and it is shown that if the original theory contains an isodoublet scalar field, the quantum excitations may be half odd integer eigenvalue eigenstates of this operator.  相似文献   

13.
A T-matrix formulation is presented to compute acoustic scattering from arbitrary, disjoint distributions of cylinders or spheres, each with arbitrary, uniform acoustic properties. The generalized approach exploits the similarities in these scattering problems to present a single system of equations that is easily specialized to cylindrical or spherical scatterers. By employing field expansions based on orthogonal harmonic functions, continuity of pressure and normal particle velocity are directly enforced at each scatterer using diagonal, analytic expressions to eliminate the need for integral equations. The effect of a cylinder or sphere that encloses all other scatterers is simulated with an outer iterative procedure that decouples the inner-object solution from the effect of the enclosing object to improve computational efficiency when interactions among the interior objects are significant. Numerical results establish the validity and efficiency of the outer iteration procedure for nested objects. Two- and three-dimensional methods that employ this outer iteration are used to measure and characterize the accuracy of two-dimensional approximations to three-dimensional scattering of elevation-focused beams.  相似文献   

14.
Strain effects on a built-in electron-hole dipole moment are investigated in asymmetric In x Ga1?x As coupled quantum dots. We compute electron-hole separation as a function of alloy compositions for both electron and hole resonance cases. It is noted that the inclusion of strain enhances the built-in dipole moments and that the inverted electron-hole alignment is found for electron and hole resonances. Furthermore, the reversal of dipole moments gives rise to different asymmetric Stark shifts in each transition spectrum.  相似文献   

15.
We study the interplay between the edge states and a single impurity in a zigzag graphene nanoribbon. We use tight-binding exact diagonalization techniques, as well as density functional theory calculations to obtain the eigenvalue spectrum, the eigenfunctions, as well as the dependence of the local density of states (LDOS) on energy and position. We study the strictly zero-energy eigenfunctions using symmetry considerations, as well as tight-binding techniques. Moreover, we note that roughly half of the unperturbed eigenstates in the spectrum of the finite-size ribbon hybridize with the impurity state, and the corresponding eigenvalues are shifted with respect to their unperturbed values. The maximum shift and hybridization occur for a state whose energy is inverse proportional to the impurity potential, and give rise to an impurity peak in the DOS spectrum. We find that the interference between the impurity and the edge gives rise to peculiar modifications of the LDOS of the nanoribbon, in particular to oscillations of the edge LDOS. These effects depend on the size of the system, and decay with the distance between the edge and the impurity.  相似文献   

16.
The theory of time-reversal super-resolution imaging of point targets embedded in a reciprocal background medium [A. J. Devaney, "Super-resolution imaging using time-reversal and MUSIC," J. Acoust. Soc. Am. (to be published)] is generalized to the case where the transmitter and receiver sensor arrays need not be coincident and for cases where the background medium can be nonreciprocal. The new theory developed herein is based on the singular value decomposition of the generalized multistatic data matrix of the sensor system rather than the standard eigenvector/eigenvalue decomposition of the time-reversal matrix as was employed in the above-mentioned work and other treatments of time-reversal imaging [Prada, Thomas, and Fink, "The iterative time reversal process: Analysis of the convergence," J. Acoust. Soc. Am. 97, 62 (1995); Prada et al., "Decomposition of the time reversal operator: Detection and selective focusing on two scatterers," J. Acoust. Soc. Am. 99, 2067 (1996)]. A generalized multiple signal classification (MUSIC) algorithm is derived that allows super-resolution imaging of both well-resolved and non-well-resolved point targets from arbitrary sensor array geometries. MUSIC exploits the orthogonal nature of the scatterer and noise subspaces defined by the singular vectors of the multistatic data matrix to form scatterer images. The time-reversal/MUSIC algorithm is tested and validated in two computer simulations of offset vertical seismic profiling where the sensor sources are aligned along the earth's surface and the receiver array is aligned along a subsurface borehole. All results demonstrate the high contrast, high resolution imaging capabilities of this new algorithm combination when compared with "classical" backpropagation or field focusing. Above and beyond the application of seismo-acoustic imaging, the time-reversal super-resolution theory has applications in ocean acoustics for target location, and ultrasonic nondestructive evaluation of parts.  相似文献   

17.
The quantum corrections to the thermodynamic properties of polar hard sphere fluids and fluid mixtures are estimated taking into account the influence of dipole and quadrupole moments. Expressions are given for the second virial coefficient, free energy and pressure and results are given for different values ofμ* andϑ*. The first order quantum correction arises due to the translational contribution only. The quantum effect increases with density,μ* andϑ*. Numerical results are also estimated for binary mixtures of (i) hard spheres and dipole hard spheres and (ii) hard spheres and quadrupole hard spheres. The ‘excess’ free energy for dipole hard sphere binary mixture is also reported. It is found that the ‘excess’ quantum effect depends on the concentration and the particle diameter ratio and increases with increase ofμ* andϑ*.  相似文献   

18.
宋菲君 《物理学报》1992,41(5):750-758
本文对有限视场成象积分算子的理论进行讨论,利用在零级本征函数空间展开的方法,得到积分算子本征函数的近似表达式,并借助于实验中测得的脉冲响应(点扩散函数)的数据,算出具有对称性象差的显微物镜的本征值和本征函数,并进行讨论。 关键词:  相似文献   

19.
K. Mattern  B.U. Felderhof 《Physica A》1985,129(3):562-576
We study scalar wave propagation in a disordered static array of spherical scatterers. Due to a hard core repulsion the scatterers do not overlap. The wave is scattered by a δ-function potential at the center of each of the spheres. To this monopole model we apply the previously developed cluster expansion for the self-energy. We find the root of the dispersion equation for the coherent wave for a range of volume fraction5. It turns out that the monopole model develops an instability when the scattering is too strong.  相似文献   

20.
The Dirac oscillator was initially introduced as a Dirac operator which is linear in momentum and coordinate variables. In contrast to the usual 2D Dirac oscillator, the 2D Kramers–Dirac oscillator admits the time-reversal symmetry, which is a reason for the present nomenclature. It is shown that there exists a family of eigenstates associated with an eigenvalue linear in the control parameter, and the eigenvalue in question goes down from positive values to negative values as the parameter varies in the positive direction. The other eigenvalues are broken up into two bands, positive and negative. The 2D Dirac and the 2D Kramers–Dirac oscillators are compared in their physical grounds and in their spectral structure from the viewpoint of the time-reversal symmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号