首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the fabrication of self-organized surfactant nanofibers containing platinum ions on a highly oriented pyrolytic graphite (HOPG) surface from mixed solutions of hexadecyltrimethylammonium hydroxide (C16TAOH) and hydrogen hexachloroplatinate (IV) (H2PtCl6). The fibrous surfactant self-assembly was stable in air, even after being soaked in water, in contrast to surfactant hemicylindrical micelles, which are stable only at graphite/solution interfaces. The results show that the graphite surface served as an essential template for the specific formation of fibrous surfactant self-assemblies. In addition, when surfactant nanofibers containing metal ions were treated with hydrazine, platinum nanoparticles concentrated in the nanofibers formed on the HOPG surface. We also prepared surfactant nanofibers containing gold ions on HOPG surfaces and formed gold nanoparticles in the nanofibers.  相似文献   

2.
Surfactants of practical interest are invariably mixtures of different types. In this study, mixtures of sugar-based n-dodecyl-beta-D-maltoside with cationic dodecyltrimethylammonium bromide, anionic sodium dodecylsulfate, and nonionic pentaethyleneglycol monododecyl ether in solution, with and without supporting electrolyte, have been studied using surface tension and fluorescence spectroscopic techniques. Interaction parameters and mole fraction of components in mixed micelles were calculated using regular solution theory. The magnitude of interactions between n-dodecyl-beta-D-maltoside and other surfactants followed the order anionic/nonionic > cationic/nonionic > nonionic/nonionic mixtures. Since all surfactants have the same hydrophobic groups, strengths of interactions are attributed to the structures of hydrophilic headgroups. Electrolyte reduced synergism between n-dodecyl-beta-D-maltoside and ionic surfactant due to charge neutralization. Industrial sugar-based surfactant, dodecyl polyglucoside, yielded results similar to that with dodecyl maltoside, implying that tested commercial alkyl polyglucosides are similar to the pure laboratory samples in synergistic interactions with other surfactants. Fluorescence study not only supported the cmc results using tensiometry, but showed that interfaces of all the above mixed micelle/solution interfaces are mildly hydrophobic. Based on these results, an attempt is made to discover the nature of interactions to be a combination of intermolecular potential energies and free energy due to packing of surfactant molecules in micelles.  相似文献   

3.
Single-crystalline platinum nanosheets have been prepared via a new methodology based on the chemical reduction of a platinum salt (H2PtCl6) with hydrazine at a graphite/solution interface, using polyoxyethylene (20) sorbitan monostearate (Tween 60) based self-assembly (hemicylindrical micelle) templates. The platinum nanosheets with a uniform thickness of as thin as 3.5 +/- 1 nm are surface-smooth and continuous over relatively large length scales of micrometer sizes. In striking contrast to the Tween 60 based system, no Pt nanosheets are obtained with nonaethylene glycol monododecyl ether (C12EO9) and polyoxyethylene (23) dodecyl ether (C12EO23). No Pt nanosheets are also obtainable with a laterally homogeneous layer of Tween 60 formed at the silica/solution interface. These results indicate that surfactant Tween 60 molecules with a triple polyoxyethylene structure, as well as their hemicylindrical micelle templates, play an essential role for the formation of the Pt nanosheets. It is also suggested that the interfacially directed growth of Pt metals within the aqueous shells of the Tween 60 hemicylindrical micelles induces the thin Pt crystals as thick as the aqueous shells. The present approach could be extended to prepare a wide range of novel nanostructures of noble metals, using various micelle-like self-assemblies at interfaces.  相似文献   

4.
Ionic/nonionic mixed micelle formation of dodecyldimethylamine oxide (DDAO) was studied by measuring the activities of DDAO+ ions and Cl ions using surfactant-selective electrodes and Ag/AgCl electrodes at three pH values in the absence of added salt. DDAO monomer exists as either a nonionic or a cationic species depending on the pH of the aqueous solution and hence the two species are not independent of each other. A new relation between the activity of the surfactant ions and that of the counterions is presented which differs from the corresponding relation valid for ionic/nonionic mixed micelles consisting of independent components. Received: 15 May 1998 Accepted in revised form: 30 September 1998  相似文献   

5.
Measurements of counterion binding in mixtures of surfactant aqueous solutions have been performed to study the structure of the anionic/cationic mixed micelle/solution interface. The mixtures studied were SDS/DDAC and STS/TDPC. The binding of chloride and sodium ions to mixed anionic/cationic micelles was measured using ion-specific electrodes. Counterion binding was found to be strongly dependent on the molar ratio of surfactants present. The mixed micelle/solution interface includes the headgroups of both surfactants and counterions of surfactant in excess. The addition of oppositely charged surfactant caused an increasing dissociation of counterions.  相似文献   

6.
The effect of different nine molar mixed ratios of didecyl dimethyl ammonium chloride as a cationic surfactant and nonyl phenol ethoxylate (e.o. = 9) as a nonionic surfactant, on the inhibition behavior of carbon steel have been examined using the weight loss and the potensiodynamic methods. The results show that these mixed cationic/nonionic surfactant mixtures (II to X) can be used to inhibit the corrosion of steel pipelines in the petroleum acid job. The surface active properties of the used surfactant mixtures were calculated using the surface tension measurements and the critical micelle concentration (CMC) values. The micellar interaction parameters of the investigated mixtures were calculated using the data of CMC. From the corrosion results it was found that, the maximum synergistic effect was obtained by the mixtures VIII (30%C + 70%N) and IV (70%C + 30%N). They exhibited inhibition efficiency expressed by the rate of corrosion as 5.15 and 1.53 miles per year respectively, at 400 ppm. The positive synergistic behavior of these mixtures pronounced the better results than which obtained by the individual inhibitors (cationic or nonionic alone). At the same time the maximum micellar interaction parameter was obtained by the mixtures VIII and IV (?1.85 and ?1.80, respectively). These results justified the strong relationship between the corrosion inhibition efficiency and the micellar interaction parameters of the mixed surfactants which used as an organic corrosion inhibitors.  相似文献   

7.
Cationic surfactants are important for a wide range of applications, including controlled drug delivery systems, emulsifiers, and chemical mechanical polishing. It is therefore important to better understand surfactant structure and properties at the solid-liquid interface. Here, classical molecular dynamics simulations with empirical potentials are used to compare the structures and mechanical properties of cationic surfactant micelles at hydrophobic (graphite) and hydrophilic (silica) surface-water interfaces. In particular, the morphology of monolayers and bilayers of C12TAB (n-dodecyltrimethylammoniumbromide) at these interfaces, and their responses to atomic force microscopy indentation, are examined. The simulations predict that surfactant monolayers and bilayers on silica evolve into a spherical micelle structure, in agreement with theoretical models of surfactant morphology. In contrast, surfactant monolayers on graphite evolve into a hemi-cylindrical structure, in agreement with experimental findings. In the simulated indentation of the micelle/silica system, the spherical micelle breaks apart and forms a surfactant monolayer. The indentation force curve has a maximum value of 2.25 nN. On the other hand, the simulated indentation of the micelle/graphite system causes the hemi-cylindrical micelle structure to break apart and the surfactant tails to wrap around the graphite indenter. The indentation force curve has a maximum value of 13 nN.  相似文献   

8.
用双表面活性剂为共模板合成中孔分子筛MCM-48   总被引:4,自引:0,他引:4  
利用水热法以非离子表面活性剂聚乙二醇辛基苯基醚和阳离子表面活性剂十六烷基三甲基溴化铵为共模板合成了中孔分子筛MCM-48.实验中发现利用较强的范德华力和氢键,聚乙二醇辛基苯基醚可在很大程度上降低合成MCM-48所需阳离子表面活性剂的用量,且利于制备有序性好、骨架聚合度高、稳定性好的MCM-48.通过调节聚乙二醇辛基苯基醚与十六烷基三甲基溴化铵的比例,可得到不同物相结构的分子筛.  相似文献   

9.
C12-s-C12•2Br和C12En混合水溶液的胶团化行为   总被引:3,自引:0,他引:3  
季铵盐二聚表面活性剂C12 s C12•2Br(s=2、3、4、6)和非离子表面活性剂C12E10或C12E23在水溶液中生成混合胶团.其临界胶团总浓度cmcT值介于二元复配体系中各组分的临界胶团浓度和之间.当添加少量非离子型表面活性剂(在水溶液中的摩尔分数α2=0.1)时,混合胶团中C12E10或C12E23的摩尔分数均已超过0.35;随着溶液中非离子型表面活性剂含量的增大,混合胶团中逐渐以C12E10或C12E23成分为主.  相似文献   

10.
The effects of different alkyl chains of nonionic surfactants and solubilized polar oily material on the solubilizing capacity of binary anionic‐nonionic mixed surfactant systems were studied. This system includes surface tension measurements to determine the critical micelle concentration. Results were analyzed using regular solution theory to obtain the mixed micelle and the interaction parameter β, in order to evaluate the type of interactions of surfactants in the mixed micelle. Solubilizing capacity has been investigated by measuring the optical density of solubilized polar oily materials like octanol, decanol, and dodecanol. The solubilizing phenomenon exhibited by mixed surfactants systems showed better results than that of the individual surfactant system. The amount of solubilization in mixed surfactant increases with increase in carbon chain length of alkyl polyglucoside.  相似文献   

11.
Ion-association extraction of some aromatic sulfonate ions including alkylbenzene sulfonates with tetrabutylammonium ion (TBA+) into nonionic surfactant micelle has been investigated through the changes in the electrophoretic mobility. Nonionic surfactants of Brij 35 and Brij 58 were used as micelle substrates to which the ion-associates formed could distribute. The electrophoretic mobility of the aromatic sulfonate ions was measured by capillary zone electrophoresis in the presence of TBA+ and/or the nonionic surfactant to determine ion-association constants (K(ass)), binding constants of the anions to the nonionic surfactant micelle (K(B)), and binding constants of the ion-associates to the nonionic surfactant micelle (K(B,IA)). Nonlinear phenomena induced with the alkyl chain moiety were observed on K(ass) and K(B) by its linear structure and the mixed micelle formation, respectively. Larger K(B) values were obtained with Brij 58 as micelle matrix than with Brij 35, while the differences in K(B,IA) were small between Brij 58 and Brij 35.  相似文献   

12.
The differential excess enthalpy of mixed micelle formation was measured at different temperatures by mixing nonionic hexa(ethylene glycol) mono n-dodecyl ether with anionic sodium dodecyl sulfate or cationic dodecylpyridinium chloride. The experimental data were obtained calorimetrically by titrating a concentrated surfactant solution into a micellar solution of nonionic surfactant. The composition and the size of the mixed nonionic/ionic micelles at different surfactant concentrations were also determined. Pronounced differences in both composition and excess enthalpy were found between the anionic and the cationic mixed system. For both systems, the excess enthalpies become more exothermic with increasing temperature, but for the anionic mixed system an additional exothermic contribution was found which was much less temperature dependent. Temperature dependence of the excess enthalpy was attributed to the effect of the ionic headgroup on the hydration of the ethylene oxide (EO) groups in the mixed corona. Ionic headgroups located in the ethylene oxide layer cause the dehydration of the EO chains resulting in an additional hydrophobic contribution to the enthalpy of mixing. A high affinity of sodium dodecyl sulfate for nonionic micelles and an extra exothermic and less temperature dependent contribution to the excess enthalpy found for the SDS-C(12)E(6) system might be attributed to specific interactions (hydrogen bonds) between the sulfate headgroup and the partly dehydrated EO chain.  相似文献   

13.
Solutions of surfactant-polymer mixtures often exhibit different foaming properties, compared to the solutions of the individual components, due to the strong tendency for formation of polymer-surfactant complexes in the bulk and on the surface of the mixed solutions. A generally shared view in the literature is that electrostatic interactions govern the formation of these complexes, for example between anionic surfactants and cationic polymers. In this study we combine foam tests with model experiments to evaluate and explain the effect of several polymer-surfactant mixtures on the foaminess and foam stability of the respective solutions. Anionic, cationic, and nonionic surfactants (SDS, C(12)TAB, and C(12)EO(23)) were studied to clarify the role of surfactant charge. Highly hydrophilic cationic and nonionic polymers (polyvinylamine and polyvinylformamide, respectivey) were chosen to eliminate the (more trivial) effect of direct hydrophobic interactions between the surfactant tails and the hydrophobic regions on the polymer chains. Our experiments showed clearly that the presence of opposite charges is not a necessary condition for boosting the foaminess and foam stability in the surfactant-polymer mixtures studied. Clear foam boosting (synergistic) effects were observed in the mixtures of cationic surfactant and cationic polymer, cationic surfactant and nonionic polymer, and anionic surfactant and nonionic polymer. The mixtures of anionic surfactant and cationic polymer showed improved foam stability, however, the foaminess was strongly reduced, as compared to the surfactant solutions without polymer. No significant synergistic or antagonistic effects were observed for the mixture of nonionic surfactant (with low critical micelle concentration) and nonionic polymer. The results from the model experiments allowed us to explain the observed trends by the different adsorption dynamics and complex formation pattern in the systems studied.  相似文献   

14.
To evaluate the effect of preferential surface adsorption of bromide ions on the synergism of homologous cationic surfactant mixtures reported previously, the surface tension of the aqueous solutions of the hexadecyltrimethylammonium chloride (HTAC)-dodecyltrimethylammonium bromide (DTAB) system was measured as a function of the total molality of surfactants and the relative proportion of DTAB at 298.15 +/- 0.05 K under atmospheric pressure. The excess Gibbs energies calculated from them were -2.6 kJ mol(-)(1) in the mixed adsorbed film and -2.0 kJ mol(-)(1) in the mixed micelle, respectively. A useful analytical procedure to evaluate the composition of individual ions (hexadecyltrimethylammonium, dodecyltrimethylammonium, chloride, and bromide ions) in the adsorbed film and micelle was developed and applied.  相似文献   

15.
The mixed micellar properties of a triblock copolymer, Pluronic L64, (EO)13(PO)30(EO)13, and a nonionic surfactant, Triton X-100, in aqueous solution with conventional alkyl ammonium bromides and their dimeric homologues were investigated with the help of fluorescence and cloud point measurements. The composition of mixed micelles and the interaction parameter, beta, evaluated from the critical micelle concentration (cmc) data for different mixtures using Rubingh's and Motomura's theories are discussed. It has been observed that the mixed micelle formation between monomeric/dimeric alkyl ammonium bromides and L64 was due to synergistic interactions which increase with the increase in hydrophobicity of the cationic component. On the other hand, synergistic mixing was observed in the mixed micelles of Triton X-100 and monomeric cationic surfactants, the magnitude of which decreases slightly with the increase in hydrophobicity of the cationic component. Antagonistic interactions were observed in the case of Triton X-100 and dimeric cationic surfactants.  相似文献   

16.
Mixed micelles are formed in the binary compositions based on the cationic surfactant functionalized by the butyl carbamate fragment and nonionic surfactant Tween 80 in aqueous solutions. The aggregation parameters of the formed micelles (critical micelle concentration, size, and surface potential) depend on the component ratio in the system. The solubilization effect of individual and mixed micelles on the drugs of the heterocyclic series, indomethacin and 1-[5-(4-chlorophenyl)-3-phenylpyrrol-2-yl)]benzimidazol-2(3H)-one, was quantitatively characterized.  相似文献   

17.
The mean aggregation numbers of mixed micelles composed of hydrocarbon surfactants (nonionic/nonionic and ionic/nonionic surfactants) have been determined by the intensity light-scattering method, in order to compare them with the values calculated by using the equations derived. The equations have been derived for representative micellar shapes (disk-like, rod-like, and spherical shapes) by making the assumptions that (i) the surface area of the hydrocarbon core of a mixed micelle is built up by independent contributions from each surfactant monomer, and (ii) the dimension of the hydrocarbon core is determined by the number of carbon atoms of a surfactant. The closest agreement of the observed aggregation numbers with the calculated ones has been obtained for the mixed micelle of an oblate ellipsoidal shape as a geometrical model for a disk-like micelle. This suggests that an oblate ellipsoidal shape may be more probable for a micelle formed at a moderate range of surfactant concentration than a prolate ellipsoidal (a rod-like) and a spherical shape if the assumptions (i) and (ii) hold. The equations presented here are useful, since they make it possible to calculate an accurate aggregation number of the mixed micelle of any composition from the aggregation numbers of the pure micelles of the components and the number of carbon atoms of component surfactants as long as there is no highly specific interaction between different surfactant components.  相似文献   

18.
To study the influence of the chemical nature of headgroups and the type of counterion on the process of micellization in mixed surfactant systems, the cmc's of several binary mixtures of surfactants with the same length of hydrocarbon tail but with different headgroups have been determined as a function of the monomer composition using surface tension measurements. Based on these results, the interaction parameter between the surfactant species in mixed micelles has been determined using the pseudophase separation model. Experiments were carried out with (a) the nonionic/anionic C(12)E(6)/SDS ((hexa(ethyleneglycol) mono-n-dodecyl ether)/(sodium dodecyl sulfate)), (b) amphoteric/anionic DDAO/SDS ((dodecyldimethylamine oxide)/(sodium dodecyl sulfate)), and (c) amphoteric/nonionic C(12)E(6)/DDAO mixed surfactant systems. In the case of the mixed surfactant systems containing DDAO, experiments were carried out at pH 2 and pH 8 where the surfactant was in the cationic and nonionic form, respectively. It was shown that the mixtures of the nonionic surfactants with different kinds of headgroups exhibit almost ideal behavior, whereas for the nonionic/ionic surfactant mixtures, significant deviations from ideal behavior (attractive interactions) have been found, suggesting binding between the head groups. Molecular orbital calculations confirmed the existence of the strong specific interaction between (1) SDS and nonionic and cationic forms of DDAO and between (2) C(12)E(6) and the cationic form of DDAO. In the case for the C(12)E(6)/SDS system, an alternative mechanism for the stabilization of mixed micelles was suggested, which involved the lowering in the free energy of the hydration layer. Copyright 2000 Academic Press.  相似文献   

19.
The behavior of mixed cationic/anionic and cationic/nonionic surfactants solutions have been studied by viscosimetry. The systems studied were sodium dodecyl sulfate (SDS)/cetyltrimethylammonium bromide (CTAB) and CTAB/Brij (polyoxyethylene lauryl ether, n = 10 and 23) in aqueous and sodium chloride solutions. The relative viscosity of single nonionic surfactant solutions is larger than that of SDS or CTAB solutions. It increases with the number of ethylene oxide groups. In the mixed systems, viscosity deviates from ideal behavior. The deviation results from electrostatic interactions. The surfactant mixture composition affects the self-assembled microstructure and rheology. A new mixed system that forms clear micellar solution above CMC was detected. In CTAB/Brij systems, the experimental data also deviate from ideal behavior due to mixed micelle formation and electroviscous effect. This effect is less pronounced than that of SDS/CTAB system and could be suppressed by adding an electrolyte (NaCl).  相似文献   

20.
The composition of mixed micelles and mixed micelle — solution interfaces changes with the concentration and molar ratio of the cationic and anionic surfactants present. The micelle — solution interface includes besides the headgroups of both surfactants, the counterions of the surfactant in excess. The finding of an enhanced binding of counterions to mixed micelles may be of some practical importance in decontamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号