首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
铝掺杂针铁矿的制备、表征及吸附氟的特性   总被引:1,自引:0,他引:1  
水热条件下制备了针铁矿(Goe)和几种铝掺杂针铁矿(Goe-Al_(0.1),Goe-Al_(0.2)和Goe-Al_(0.4)),用X射线衍射(XRD)、扫描电镜(SEM)、氮气物理性吸附、酸碱滴定等手段对样品进行了表征,并研究了它们对氟离子的吸附特性。结果表明,随着铝掺杂量的增加,铝掺杂针铁矿的结晶度不断减弱、颗粒的长度不断减小。4种样品的微孔表面积、孔体积和表面分形度都表现为GoeGoeAl0.1Goe-Al_(0.2)Goe-Al_(0.4),而孔径分布表现为相反的顺序。Goe、Goe-Al_(0.1)、Goe-Al_(0.2)和Goe-Al_(0.4)的电荷零点(PZC)分别为8.2、8.3、8.5和8.7,pH=5.0时它们的表面电荷量分别为0.66、0.83、1.03和1.19 mmol·g~(-1)。准二级动力学模型适合描述4种样品对氟的吸附动力学过程,表明化学吸附是主要作用机制。一位Langmuir模型可较好的拟合等温吸附数据(R2为0.967~0.981),二位Langmuir模型对等温吸附数据的拟合度更高(R2为0.982~0.995),而Freundlich模型的拟合度较低(R2为0.877~0.912)。初始pH=5.0时,Goe、Goe-Al_(0.1)、Goe-Al_(0.2)和Goe-Al_(0.4)对氟的最大吸附容量分别为8.83、10.24、11.72和12.86 mg·g~(-1)。可见,铝掺杂针铁矿对土-水环境中氟的吸附容量高于纯针铁矿。  相似文献   

2.
采用共沉淀法制备了3种不同含铁量的氧化铁改性蛭石(Verm-Fex,x=5,10,20),研究了纯蛭石(Verm)和Verm-Fex的表面性质及吸附氟的特性。与样品Verm比较,3种Verm-Fex中Verm的d(002)层间距略有升高;Verm-Fex的孔体积、表面积、表面分形度均随含铁量的增加而升高,其中微孔体积和外表面积的增加幅度更明显。4种样品的等电点(IEP)也随含铁量的增加而明显升高;初始pH=5.0时,它们的表面ζ电位分别为-16.4,-6.1,10.5和28.4 mV。4种样品对氟的等温吸附数据用单吸附位Langmuir模型拟合(R2=0.973~0.995)时,Verm的R2最高;双吸附位Langmuir模型可很好地描述3种Verm-Fex样品的等温吸附过程(R2=0.991~0.998);Freundlich模型对4种样品吸附数据的拟合度较差(R2=0.835~0.937),但R2随样品含铁量的增加而略微升高。初始pH=5.0时,Verm和Verm-Fexx=5,10,20)对氟的最大吸附容量(qmax)分别为3.18,6.76,9.27和12.43 mg·g-1。可见,Verm-Fex(尤其含铁量较高的产物)对表生环境中氟的吸附固定性能明显高于Verm。  相似文献   

3.
采用共沉淀法制备了3种不同含铁量的氧化铁改性蛭石(Verm-Fex,x=5,10,20),研究了纯蛭石(Verm)和Verm-Fex的表面性质及吸附氟的特性。与样品Verm比较,3种Verm-Fex中Verm的d(002)层间距略有升高;Verm-Fex的孔体积、表面积、表面分形度均随含铁量的增加而升高,其中微孔体积和外表面积的增加幅度更明显。4种样品的等电点(IEP)也随含铁量的增加而明显升高;初始pH=5.0时,它们的表面ζ电位分别为-16.4,-6.1,10.5和28.4 mV。4种样品对氟的等温吸附数据用单吸附位Langmuir模型拟合(R2=0.973~0.995)时,Verm的R2最高;双吸附位Langmuir模型可很好地描述3种Verm-Fex样品的等温吸附过程(R2=0.991~0.998);Freundlich模型对4种样品吸附数据的拟合度较差(R2=0.835~0.937),但R2随样品含铁量的增加而略微升高。初始pH=5.0时,Verm和Verm-Fex(x=5,10,20)对氟的最大吸附容量(qmax)分别为3.18,6.76,9.27和12.43 mg·g-1。可见,Verm-Fex(尤其含铁量较高的产物)对表生环境中氟的吸附固定性能明显高于Verm。  相似文献   

4.
采用共沉淀法制备了3种聚合羟基铁改性蒙脱石(Mt-Fex,x=1,2,3),对比研究了纯蒙脱石(Mt)和Mt-Fexx=1,2,3)的表面性质及吸附Se(Ⅵ)的特性。结果表明,Mt样品的d(001)层间距为1.296nm,在Mt-Fex中升高至1.430nm以上;与Mt样品比较,Mt-Fex的孔体积、表面积、表面分形度均随含铁量的增加而升高,其中微孔体积和微孔表面积的变化尤为明显;Mt样品的等电点(IEP)低于3,而Mt-Fe3的IEP升高至6.8;初始pH=5.0时,Mt和Mt-Fexx=1,2,3)的表面ζ电位分别为-33.5,-11.7,9.9和33.2mV。单吸附位Langmuir模型能够很好地拟合Mt样品对Se(Ⅵ)的等温吸附数据(R2=0.993),4种样品吸附数据的单吸附位Langmuir拟合判断系数(R2)随样品含铁量的增加而降低;3种Mt-Fex样品的吸附数据更适合用双吸附位Langmuir模型拟合(R2=0.993~0.997);Freundlich模型对4种样品的吸附数据拟合度较低(R2=0.849~0.970),其判断系数(R2)随样品含铁量的增加而升高。初始pH=5.0时,Mt和Mt-Fexx=1,2,3)对Se(Ⅵ)的吸附容量分别为4.23,7.83,10.38和14.34mg·g-1。可见,聚合羟基铁含量较高的Mt-Fex样品对土-水体系中Se(Ⅵ)的固定能力明显高于Mt。  相似文献   

5.
采用一种改进的共沉淀法制备了纳米磁铁矿(Fe3O4)及Ni2+掺杂磁铁矿(NixFe3-xO4,x=0.1,0.3,0.6),用X-射线衍射(XRD)、扫描电镜(SEM)、氮气物理性吸附、酸碱滴定等手段对产物进行了表征,用平衡吸附法研究了4种样品对Pb(Ⅱ)离子的吸附容量及吸附模型。结果表明,Fe3O4和3种NixFe3-xO4均为近似球形的单相晶质纳米颗粒;与Fe3O4比较,NixFe3-xO4的颗粒尺寸变小、表面电荷零点和pH=5.0时的表面正电荷量降低;样品的孔体积、比表面积和表面分形度以及表面羟基含量都随产物中Ni2+掺杂量的增加而升高。4种样品对Pb(Ⅱ)的等温吸附数据均适合用Langmuir模型拟合(R2=0.9942~0.9858),其相关系数的大小表现为:Fe3O4>Ni0.1Fe2.9O4>Ni0.3Fe2.7O4=Ni0.6Fe2.4O4;Freundlich模型对样品等温吸附Pb(Ⅱ)的实验数据拟合度较低(R2=0.9813~0.9477),4种样品的Freundlich相关系数的大小关系与Langmuir相关系数相反。初始pH=5.0时,Fe3O4,Ni0.1Fe2.9O4,Ni0.3Fe2.7O4和Ni0.6Fe2.4O4对Pb(Ⅱ)的最大吸附容量分别为6.02,6.68,7.29和8.34mg·g-1。可见,NixFe3-xO4(尤其是Ni2+掺杂量较高的产物)对水环境中重金属Pb(Ⅱ)的去除能力明显高于Fe3O4。  相似文献   

6.
魏世勇  杨小洪 《无机化学学报》2013,29(12):2615-2622
采用一种改进的共沉淀法制备了纳米磁铁矿(Fe3O4)及Ni2+掺杂磁铁矿(NixFe3-xO4,x=0.1,0.3,0.6),用X-射线衍射(XRD)、扫描电镜(SEM)、氮气物理性吸附、酸碱滴定等手段对产物进行了表征,用平衡吸附法研究了4种样品对Pb(Ⅱ)离子的吸附容量及吸附模型。结果表明,Fe3O4和3种NixFe3-xO4均为近似球形的单相晶质纳米颗粒;与Fe3O4比较,NixFe3-xO4的颗粒尺寸变小、表面电荷零点和pH=5.0时的表面正电荷量降低;样品的孔体积、比表面积和表面分形度以及表面羟基含量都随产物中Ni2+掺杂量的增加而升高。4种样品对Pb(Ⅱ)的等温吸附数据均适合用Langmuir模型拟合(R2=0.9942~0.9858),其相关系数的大小表现为:Fe3O4>Ni0.1Fe2.9O4>Ni0.3Fe2.7O4=Ni0.6Fe2.4O4;Freundlich模型对样品等温吸附Pb(Ⅱ)的实验数据拟合度较低(R2=0.981 3~0.947 7),4种样品的Freundlich相关系数的大小关系与Langmuir相关系数相反。初始pH=5.0时,Fe3O4,Ni0.1Fe2.9O4,Ni0.3Fe2.7O4和Ni0.6Fe2.4O4对Pb(Ⅱ)的最大吸附容量分别为6.02,6.68,7.29和8.34 mg·g-1。可见,NixFe3-xO4(尤其是Ni2+掺杂量较高的产物)对水环境中重金属Pb(Ⅱ)的去除能力明显高于Fe3O4。  相似文献   

7.
采用静电纺丝法成功制备了La3+掺杂CaFe2O4材料。通过X射线衍射、扫描电子显微镜和X射线光电子能谱对La3+掺杂CaFe2O4材料的结构和形貌进行了表征。随后,研究了La3+的掺杂量(质量分数)对CaFe2O4气敏性能的影响。研究表明,3% La3+掺杂CaFe2O4材料在室温下对100 μL·L-1甲醛的响应最高(Ra/Rg=14.1)。更为重要的是,对甲醛的最低检测限低至0.1 nL·L-1,并且响应/恢复时间仅为4.3 s/8.4 s。  相似文献   

8.
采用碳酸盐共沉淀与燃烧法相结合的方法制备得到了多孔微纳球形结构的富锂正极材料0.6Li2MnO3·0.4LiNi0.5Mn0.5O2。借助X射线衍射(XRD)分析、X射线光电子能谱(XPS)、扫描电镜(SEM)、透射电镜(TEM)、N2吸附-脱附和恒电流充放电测试研究了其晶体结构、微观形貌和电化学性能。结果表明该方法制备出的材料是由一次颗粒径约300 nm的小颗粒组成的多孔微纳球形结构,比表面积为13 m2·g-1,具有完善的α-NaFeO2层状结构(空间群为R3m)。电化学性能测试结果证实该材料具有优异的高容量、高循环稳定性和高倍率性能。在2.0~4.8 V,电流密度为0.1C、0.2C、0.5C、1C、3C、5C和10C时的放电比容量分别为:266、254、235、205、186、149和107 mAh·g-1;在0.5C下循环100次后,放电比容量仍为217 mAh·g-1(容量保持率为94%)。  相似文献   

9.
以结晶氯化铝(AlCl3·6H2O)作为铝源,十二烷基苯磺酸钠(SDBS)为模板剂,采用水热法在硅藻土盘上制备了束状纳米结构γ-AlOOH/Al2O3复合吸附剂。采用XRD、SEM、TEM、TG/DSC、N2吸脱附等对样品进行了表征。研究了样品对133Cs+及Pb2+的吸附能力。研究表明,样品γ-AlOOH/硅藻土、γ-Al2O3/硅藻土,对Cs+及Pb2+均具有良好的吸附性能,两者对Cs+的去除率分别为98.9%和99.6%;对Pb2+的最大吸附量分别为357.1、416.7 mg·g-1。两种样品对Pb2+的吸附均符合Langmuir吸附模型。  相似文献   

10.
以结晶氯化铝(AlCl3·6H2O)作为铝源,十二烷基苯磺酸钠(SDBS)为模板剂,采用水热法在硅藻土盘上制备了束状纳米结构γ-AlOOH/Al2O3复合吸附剂。采用XRD、SEM、TEM、TG/DSC、N2吸脱附等对样品进行了表征。研究了样品对133Cs+及Pb2+的吸附能力。研究表明,样品γ-AlOOH/硅藻土、γ-Al2O3/硅藻土对Cs+及Pb2+均具有良好的吸附性能,两者对Cs+的去除率分别为98.9%和99.6%;对Pb2+的最大吸附量分别为357.1、416.7mg·g-1。两种样品对Pb2+的吸附均符合Langmuir吸附模型。  相似文献   

11.
The synthesis of goethite by oxidation of Fe2+in presence of metallic iron was undertaken in an aqueous medium containing indifferent salts such as Na2SO4, (NH4)2SO4, NaCl, and NH4Cl. Temperature and bubbling air rate were maintained, respectively, at 70°C and 1 L/min. The influence of anions and cations on the kinetics of each step of the process has been followed distinctly, the iron dissolution rate has been determined by the variation of the medium acidity, and the precipitation of goethite has been determined by gravimetric measurements. With respect to Cl, the SO42−anion decreases the rate of the two reactions. NH4+acts as an inhibitor when it is present at low concentrations and as an accelerator for higher concentrations; the limit corresponding to the change of NH4+behavior depends on the nature of the counter ion. The reaction product is composed of pure goethite in the presence of sulfate salts, whereas a mixture of goethite and lepidocrocite, respectively, 60–70 and 40–30%, was observed in the presence of chloride salts.  相似文献   

12.
The kinetics of thermal dehydroxylation of aluminuous goethites [1] synthesised from a ferrous salt has been re-examined using the general reaction order kinetic law. The utilised data processing was based on the procedures employed by dissolution kinetics. Recalculation of the activation energies EA of the dehydroxylation yielded the values 130, 132, 128, and 123 kJ mol−1 for pure goethite, goethite with 10, 20, and 30 mol% Al substitution, respectively. The values of EA are in a good agreement with those given for goethite in literature. The EA values are linearly related with the chemically bound excess H2O/OH in the crystal lattice that is apparently influenced by Al substitution. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
《印度化学会志》2023,100(4):100974
Removal of Methylene Blue (MB) dye using Litchi Leaves Powder (LLP) material was carried out in batch mode. Effect of the mass of the adsorbent (0.1–2.5 g/L), pH of the solution (2−12), starting concentration of MB dye (50–150 mg/L), ionic strength using NaCl (0.1–0.5 M) as an electrolyte, contact time (0–60 min) on the adsorption of MB dye was studied. To calculate pH at which LLP material surface becomes neutral point of zero charge (pHpzc) is also determined and found to be 6.48. Removal process best fit in the pseudo-second-order kinetic model as indicated by its higher R2 value (0.999). Isotherm models (Freundlich and Langmuir) were fitted to the data obtained from the experiment to understand the adsorption behaviour. Result shows that experimental data were fitted to the both isotherm models (Freundlich and Langmuir) as indicated by higher R2 value for both Freundlich (0.991) and Langmuir (0.994) model, and it was determined that LLP has a maximum adsorption capacity of 119.76 mg/g.  相似文献   

14.
The adsorption of roxarsone (ROX) on the humic acid modified goethite (HA-α-FeOOH) was evaluated for several potential environmental factors. Results showed that 1) ROX had a higher adsorption capacity onto HA-α-FeOOH than unmodified α-FeOOH; 2) the adsorption of ROX increased with a decrease in pH; 3) the high ionic strength significantly inhibited the adsorption capacity of HA-α-FeOOH; and 4) a higher temperature yielded greater adsorption, since the process for ROX to be adsorbed by HA-α-FeOOH was a spontaneous endothermic reaction. The maximum adsorption capacity of ROX was found to be 80.71?mg?·?g?1, when the temperature was 308?K. Meanwhile, the inhibitory effects of ionic strength and PO43? on the adsorption of ROX onto HA-α-FeOOH were enhanced with an increase in concentration. In addition, the adsorption equilibrium data obeyed Langmuir isotherm model and the kinetic data were well described by the pseudo-second-order kinetic model. From the infrared spectra of HA-α-FeOOH, it could be deduced that the ROX adsorption onto HA-α-FeOOH was achieved via the ion exchange between the arsenic acid and the carboxyl group on adsorbent, as well as the formation of As-O-Fe bond between Fe-O and arsenic acid ions.  相似文献   

15.
The adsorption of Cd(II) and Co(II) onto goethite was measured at five temperatures between 10 and 70 degrees C. For both cations the amount adsorbed at any given pH increased as the temperature was increased. Cd(II) adsorbed at a slightly lower pH at each temperature than Co(II). Adsorption isotherms at pH 7.00 for Cd(II) could be fitted closely by a simple Langmuir model, but a two-site Langmuir model was needed for Co(II). Potentiometric titrations of goethite suspensions in the presence and absence of added cation could be modeled closely by a constant-capacitance surface complexation model that assumed the adsorption reactions M2+ + SOH ⇋ SOM+ + H+ and M2+ + SOH + H2O ⇋ SOMOH + 2H+, where M represents Cd or Co. This model also fitted the experimental data from the adsorption edge and adsorption isotherm experiments. Thermodynamic parameters estimated from both Langmuir and surface complexation models showed that the adsorption of both metals was endothermic. Values obtained for the adsorption enthalpies from both modeling schemes were similar for both cations. Estimates of the adsorption entropies were model-dependent: Langmuir parameters yielded positive entropies, while some of the surface complexation parameters generated negative adsorption entropies. Copyright 1999 Academic Press.  相似文献   

16.
Amorphous TiO2, synthesized from TiCl4 and diluted NH3 solution, was characterized by X-ray diffraction spectrometry, UV–Vis diffused reflectance spectroscopy, Fourier-transformed infrared spectroscopy, and scanning electron microscopy. The powder exhibited high specific surface area at 508 m2/g as measured by the Brunauer-Emmett-Teller method. The pH at point of zero charge of the as-prepared amorphous TiO2 was determined by the pH drift method to be 6.8. The product was studied for its sorption efficiency using two dyes—crystal violet (CV) and malachite green (MG). Studies on the effects of various sorption parameters (contact time, TiO2 dosage, pH of solution, and initial concentration of dye) were carried out in order to find the optimum adsorption conditions for which the results were: contact time ~30 min, TiO2 dosage ~0.05–0.1 g, pH 7–9, and initial concentration <1 × 10?4 M. The adsorption data were analyzed and fitted better with the Langmuir model than the Freundlich model. The maximum adsorption capacities obtained from the Langmuir model were 0.4979 and 0.4075 mmol dye/g TiO2 for CV and MG dye, respectively. In addition, the regeneration and the recyclability of the prepared amorphous TiO2 were also studied. The used adsorbent should be regenerated 10–12 h before reuse in the next cycle for the best result.  相似文献   

17.
Anatase TiO2 nanosheets (TiO2 NS) with dominant (001) facets and TiO2 nanoparticles (TiO2 NP) with dominant (101) facets are fabricated by hydrothermal hydrolysis of Ti(OC4H9)4 in the presence and absence of hydrogen fluoride (HF), respectively. Adsorption of N719 onto the as‐prepared samples from ethanol solutions is investigated and discussed. The adsorption kinetic data are modeled using the pseudo‐first‐order, pseudo‐second‐order, and intraparticle diffusion kinetics equations, and indicate that the pseudo‐second‐order kinetic equation and intraparticle diffusion model can better describe the adsorption kinetics. Furthermore, adsorption equilibrium data of N719 on the as‐prepared samples are analyzed by Langmuir and Freundlich models; this suggests that the Langmuir model provides a better correlation of the experimental data. The adsorption capacities (qmax) of N719 on TiO2 NS at various temperatures, determined using the Langmuir equation, are 65.2 (30 °C), 68.2 (40 °C), and 76.6 (50 °C) mg g−1, which are smaller than those on TiO2 NP, 92.4 (30 °C), 100.0 (40 °C), and 108.2 (50 °C) mg g−1, respectively. The larger adsorption capacities of N719 for TiO2 NP versus NS are attributed to its higher specific surface areas. However, the specific adsorption capacities (qmax/SBET) at various temperatures are 1.5 (30 °C), 1.6 (40 °C), and 1.7 (50 °C) mg m−2 for TiO2 NS, which are otherwise higher than those for NP, 0.9 (30 °C), 1.0 (40 °C), and 1.1 (50 °C) mg m−2, respectively. The larger specific adsorption capacities of N719 for TiO2 NS versus NP are because the (001) surface is more reactive for dissociative adsorption of reactant molecules compared with (101) facets. Notably, the qmax and qmax/SBET for both TiO2 samples increase with increasing temperature, suggesting that adsorption of N719 on the TiO2 surface is an endothermic process, which is further confirmed by the calculated thermodynamic parameters including free energy, enthalpy, and entropy of adsorption process. The present work will provide a new understanding on the adsorption process and mechanism of N719 molecules onto TiO2 NS and NP, and this should be of great importance for enhancing the performance of dye‐sensitized solar cells.  相似文献   

18.
In this study activated carbon was used for the removal of thiram from aqueous solutions. Adsorption experiments were carried out as a function of time, initial thiram concentration and temperature. Equilibrium data fitted well to the Freundlich and Langmuir equilibrium models in the studied concentration range. Adsorption kinetics followed a pseudo second‐order kinetic model rather than pseudo first‐order model. The results from kinetic experiments were used to describe the adsorption mechanism. Both boundary layer and intraparticle diffusion played important role in the adsorption mechanism of thiram. Thermodynamic parameters (ΔG0, ΔH0, and ΔS0) were determined and the adsorption process was found to be an endothermic one. The negative values of ΔG0 at different temperatures were indicative of the spontaneity of the adsorption process.  相似文献   

19.
Fluoride occurs in some drinking water sources at levels that are hazardous to health. Tests were conducted to assess the ability of a mineral-based adsorbent to take-up fluoride ion. Consequently, in search of novel adsorbent media, crystalline and hydrous iron(III)-zirconium(IV) hybrid oxide (IZHO) was synthesized, and tested to determine its capacity and kinetics for fluoride adsorption. The Fourier Transform Infrared (FTIR) spectrum of IZHO indicated the presence of Fe–O–Zr linkage which showed hybrid nature of the synthetic oxide. The optimum pH range for fluoride adsorption was ranged between 4.0 and 7.0. The analyses of the isotherm equilibrium data using the Langmuir and the Redlich–Peterson model equations by linear and non-linear methods showed that the data fitted better with latter model than the former. Thermodynamic analysis showed spontaneous nature of fluoride adsorption, and that took place with the increase of entropy. The kinetic data obtained for fluoride adsorption on IZHO at pH 6.8 (±0.1) and room temperature (303±2 K) described both the pseudo-first order and the reversible first-order equations equally well (r 2= ∼0.98–0.99), and better than pseudo second order equation (r 2= ∼0.96–0.98) for higher concentrations (12.5 and 25.0 mg/dm3) of fluoride. The kinetics of fluoride adsorption on the mixed oxide took place with boundary layer diffusion. External mass transport with intra-particle diffusion phenomena governed the rate limiting process, which has been confirmed from the Boyd poor non-linear kinetic plots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号