首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Existence of a Solution “in the Large” for Ocean Dynamics Equations   总被引:1,自引:0,他引:1  
For the system of equations describing the large-scale ocean dynamics, an existence and uniqueness theorem is proved “in the large”. This system is obtained from the 3D Navier–Stokes equations by changing the equation for the vertical velocity component u 3 under the assumption of smallness of a domain in z-direction, and a nonlinear equation for the density function ρ is added. More precisely, it is proved that for an arbitrary time interval [0, T], any viscosity coefficients and any initial conditions
a weak solution exists and is unique and and the norms are continuous in t. The work was carried out under partial support of Russian Foundation for Basic Research (project 05-01-00864).  相似文献   

2.
This paper deals with connected branches of nonstationary periodic trajectories of Hamilton equations
emanating from the degenerate stationary point for H being the generalized Hénon-Heiles (HH) Hamiltonian:
or the generalized Yang-Mills (YM) Hamiltonian:
The existence of such branches has been proved. Minimal periods of searched trajectories near x0 have been described.  相似文献   

3.
We consider the Cauchy problem for incompressible Navier–Stokes equations with initial data in , and study in some detail the smoothing effect of the equation. We prove that for T < ∞ and for any positive integers n and m we have , as long as stays finite.  相似文献   

4.
We are concerned with the existence of a weak solution to the degenerate quasi-linear Dirichlet boundary value problem
It is assumed that 1  <  p  <  ∞, p  ≠  2, Ω is a bounded domain in is a given function, and λ stands for the (real) spectral parameter near the first (smallest) eigenvalue λ1 of the positive p-Laplacian  − Δ p , where . Eigenvalue λ1 being simple, let φ1 denote the eigenfunction associated with it. We show the existence of a solution for problem (P) when f “nearly” satisfies the orthogonality condition ∫Ω f φ1  dx  =  0 and λ  ≤  λ1  +  δ (with δ >  0 small enough). Moreover, we obtain at least three distinct solutions if either p < 2 and λ1  −  δ ≤  λ  <  λ1, or else p > 2 and λ1  <  λ  ≤  λ1  +  δ. The proofs use a minimax principle for the corresponding energy functional performed in the orthogonal decomposition induced by the inner product in L 2(Ω). First, the global minimum is taken over , and then either a local minimum or a local maximum over lin {φ1}. If the latter is a local minimum, the local minimizer in thus obtained provides a solution to problem (P). On the other hand, if it is a local maximum, one gets only a pair of sub- and supersolutions to problem (P), which is then used to obtain a solution by a topological degree argument.  相似文献   

5.
The existence and uniqueness of a solution to the nonstationary Navier–Stokes system having a prescribed flux in an infinite cylinder is proved. We assume that the initial data and the external forces do not depend on x3 and find the solution (u, p) having the following form
where x′  =  (x1, x2). Such solution generalize the nonstationary Poiseuille solutions.  相似文献   

6.
Using an Orlicz–Sobolev Space setting, we consider an eigenvalue problem for a system of the form
We prove that the solution to a suitable minimizing problem, with a restriction, yields a solution to this problem for a certain λ. The differential operators involved lack homogeneity and in addition the Orlicz–Sobolev spaces needed may not be reflexive and the corresponding functional in the minimization problem is in general neither everywhere defined nor a fortiori C 1.  相似文献   

7.
We consider the stationary flow of a generalized Newtonian fluid which is modelled by an anisotropic dissipative potential f. More precisely, we are looking for a solution of the following system of nonlinear partial differential equations
((*))
Here denotes the pressure, g is a system of volume forces, and the tensor T is the gradient of the potential f. Our main hypothesis imposed on f is the existence of exponents 1 < p  q0 <  such that
holds with constants ,  > 0. Under natural assumptions on p and q0 we prove the existence of a weak solution u to the problem (*), moreover we prove interior C1,-regularity of u in the two-dimensional case. If n = 3, then interior partial regularity is established.  相似文献   

8.
In this paper, first a class of fractional differential equations are obtained by using the fractional variational principles. We find a fractional Lagrangian L(x(t), where a c D t α x(t)) and 0<α<1, such that the following is the corresponding Euler–Lagrange
(1)
At last, exact solutions for some Euler–Lagrange equations are presented. In particular, we consider the following equations
(2)
(3)
where g(t) and f(t) are suitable functions. D. Baleanu is on leave of absence from Institute of Space Sciences, P.O. BOX MG-23, 76900 Magurele-Bucharest, Romania. e-mail: baleanu@venus.nipne.ro.  相似文献   

9.
In association with multi-inhomogeneity problems, a special class of eigenstrains is discovered to give rise to disturbance stresses of interesting nature. Some previously unnoticed properties of Eshelby’s tensors prove useful in this accomplishment. Consider the set of nested similar ellipsoidal domains {Ω1, Ω2,⋯,Ω N+1}, which are embedded in an infinite isotropic medium. Suppose that
in which and ξ t a p , p=1,2,3 are the principal half axes of Ω t . Suppose, the distribution of eigenstrain, ε ij *(x) over the regions Γ t t+1−Ω t , t=1,2,⋯,N can be expressed as
(‡)
where x k x l x m is of order n, and f ijklm (t) represents 3N(n+2)(n+1) different piecewise continuous functions whose arguments are ∑ p=1 3 x p 2 /a p 2. The nature of the disturbance stresses due to various classes of the piecewise nonuniform distribution of eigenstrains, obtained via superpositions of Eq. (‡) is predicted and an infinite number of impotent eigenstrains are introduced. The present theory not only provides a general framework for handling a broad range of nonuniform distribution of eigenstrains exactly, but also has great implications in employing the equivalent inclusion method (EIM) to study the behavior of composites with functionally graded reinforcements. The paper is dedicated to professor Toshio Mura.  相似文献   

10.
We study the dynamics and regularity of level sets in solutions of the semilinear parabolic equation
where is a ring-shaped domain, a and μ are given positive constants, is the Heaviside maximal monotone graph: if s > 0, if s < 0. Such equations arise in climatology (the so-called Budyko energy balance model), as well as in other contexts such as combustion. We show that under certain conditions on the initial data the level sets are n-dimensional hypersurfaces in the (x, t)-space and show that the dynamics of Γ μ is governed by a differential equation which generalizes the classical Darcy law in filtration theory. This differential equation expresses the velocity of advancement of the level surface Γ μ through spatial derivatives of the solution u. Our approach is based on the introduction of a local set of Lagrangian coordinates: the equation is formally considered as the mass balance law in the motion of a fluid and the passage to Lagrangian coordinates allows us to watch the trajectory of each of the fluid particles.  相似文献   

11.
In the present paper we prove the existence of weak solutions to the equations of non-stationary motion of an incompressible fluid with shear rate dependent viscosity in a cylinder Q = Ω × (0,T), where denotes an open set. For the power-low model with we are able to construct a weak solution with ∇ · u = 0.  相似文献   

12.
13.
In this paper we study the asymptotic behavior of solutions of the following nonautonomous wave equation with nonlinear dissipation.
$\left\{\begin{array}{ll} u_{tt}+\vert u_{t}\vert^{\alpha}u_{t}-\Delta u +f(u)=g(t,x),\quad{\rm in}\,\mathbb{R}_{+}\times\Omega,\\ \qquad\qquad u(t,x)=0,\quad\, {\rm on}\,\mathbb{R}_{+}\times\partial\Omega,\end{array}\right.$
where f is an analytic function, α is a small positive real and g(t, ·) tends to 0 sufficiently fast in L 2(Ω) as t tends to ∞.
We also obtain a general convergence result and the rate of decay of solutions for a class of second order ODE containing as a special case
$\left\{\begin{array}{ll} \ddot{U}(t)+\Vert\dot{U}(t)\Vert^{\alpha}\dot{U}(t)+\nabla F(U(t))=g(t),\quad t \in \mathbb{R}_+,\\ \qquad U(0)=U_{0}\,\in \mathbb{R}^{N},\quad\dot{U}(0)=U_{1}\in \mathbb{R}^{N}. \end{array}\right.$
  相似文献   

14.
For a bounded domain and , assume that is convex and coercive, and that has no interior points. Then we establish the uniqueness of viscosity solutions to the Dirichlet problem of Aronsson’s equation:
For H = H(p, x) depending on x, we illustrate the connection between the uniqueness and nonuniqueness of viscosity solutions to Aronsson’s equation and that of the Hamilton–Jacobi equation . Supported by NSF DMS 0601162. Supported by NSF DMS 0601403.  相似文献   

15.
We study the global attractor of the non-autonomous 2D Navier–Stokes (N.–S.) system with singularly oscillating external force of the form . If the functions g 0(x, t) and g 1 (z, t) are translation bounded in the corresponding spaces, then it is known that the global attractor is bounded in the space H, however, its norm may be unbounded as since the magnitude of the external force is growing. Assuming that the function g 1 (z, t) has a divergence representation of the form where the functions (see Section 3), we prove that the global attractors of the N.–S. equations are uniformly bounded with respect to for all . We also consider the “limiting” 2D N.–S. system with external force g 0(x, t). We have found an estimate for the deviation of a solution of the original N.–S. system from a solution u 0(x, t) of the “limiting” N.–S. system with the same initial data. If the function g 1 (z, t) admits the divergence representation, the functions g 0(x, t) and g 1 (z, t) are translation compact in the corresponding spaces, and , then we prove that the global attractors converges to the global attractor of the “limiting” system as in the norm of H. In the last section, we present an estimate for the Hausdorff deviation of from of the form: in the case, when the global attractor is exponential (the Grashof number of the “limiting” 2D N.–S. system is small).   相似文献   

16.
We study the question of positivity of quadratic funtionals which typically arise as the second variation at a critical point u of a functional. For interior points x1∈ Ω rank-one convexity of C0(x1) is a necessary condition for u to be a local minimizer. For boundary points x2∈ ∂ Ω where ϕ is allowed to vary freely the stronger condition of quasiconvexity at the boundary is necessary. For quadratic functionals this condition is roughly equivalent to rank-one convexity and Agmon's condition. We derive an equivalent condition on C0(x2) which is purely algebraic; and, moreover, it is variational in the sense that it can be formulated in terms of positive semidefiniteness of Hermitian matrices. A connection to the solvability of matrix-valued Riccati equations is established. Several applications in elasticity theory are treated. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
In this paper, we consider the following PDE involving two Sobolev–Hardy critical exponents,
$ \label{0.1}\left\{\begin{aligned}& \Delta u + \lambda\frac{u^{2^*(s_1)-1}}{|x|^{s_1}} + \frac{u^{2^*(s_2)-1}}{|x|^{s_2}} =0 \quad \rm {in}\,\,\Omega,\quad\quad\quad(0.1)\\ & u=0 \quad {\rm on }\,\,\Omega, \end{aligned} \right.$ \label{0.1}\left\{\begin{aligned}& \Delta u + \lambda\frac{u^{2^*(s_1)-1}}{|x|^{s_1}} + \frac{u^{2^*(s_2)-1}}{|x|^{s_2}} =0 \quad \rm {in}\,\,\Omega,\quad\quad\quad(0.1)\\ & u=0 \quad {\rm on }\,\,\Omega, \end{aligned} \right.  相似文献   

18.
This paper deals with an initial-boundary value problem for the system $$\left\{ \begin{array}{llll} n_t + u\cdot\nabla n &=& \Delta n -\nabla \cdot (n\chi(c)\nabla c), \quad\quad & x\in\Omega, \, t > 0,\\ c_t + u\cdot\nabla c &=& \Delta c-nf(c), \quad\quad & x\in\Omega, \, t > 0,\\ u_t + \kappa (u\cdot \nabla) u &=& \Delta u + \nabla P + n \nabla\phi, \qquad & x\in\Omega, \, t > 0,\\ \nabla \cdot u &=& 0, \qquad & x\in\Omega, \, t > 0,\end{array} \right.$$ which has been proposed as a model for the spatio-temporal evolution of populations of swimming aerobic bacteria. It is known that in bounded convex domains ${\Omega \subset \mathbb{R}^2}$ and under appropriate assumptions on the parameter functions χ, f and ?, for each ${\kappa\in\mathbb{R}}$ and all sufficiently smooth initial data this problem possesses a unique global-in-time classical solution. The present work asserts that this solution stabilizes to the spatially uniform equilibrium ${(\overline{n_0},0,0)}$ , where ${\overline{n_0}:=\frac{1}{|\Omega|} \int_\Omega n(x,0)\,{\rm d}x}$ , in the sense that as t→∞, $$n(\cdot,t) \to \overline{n_0}, \qquad c(\cdot,t) \to 0 \qquad \text{and}\qquad u(\cdot,t) \to 0$$ hold with respect to the norm in ${L^\infty(\Omega)}$ .  相似文献   

19.
We study the boundary-value problem associated with the Oseen system in the exterior of m Lipschitz domains of an euclidean point space We show, among other things, that there are two positive constants and α depending on the Lipschitz character of Ω such that: (i) if the boundary datum a belongs to Lq(∂Ω), with q ∈ [2,+∞), then there exists a solution (u, p), with and uL(Ω) if aL(∂Ω), expressed by a simple layer potential plus a linear combination of regular explicit functions; as a consequence, u tends nontangentially to a almost everywhere on ∂Ω; (ii) if aW1-1/q,q(∂Ω), with then ∇u, pLq(Ω) and if aC0,μ(∂Ω), with μ ∈ [0, α), then also, natural estimates holds.  相似文献   

20.
An experiment was carried out to investigate the characteristics of the heat transfer and pressure drop for forced convection airflow over tube bundles that are inclined relative to the on-coming flow in a rectangular package with one outlet and two inlets. The experiments included a wide range of angles of attack and were extended over a Reynolds number range from about 250 to 12,500. Correlations for the Nusselt number and pressure drop factor are reported and discussed. As a result, it was found that at a fixed Re, for the tube bundles with attack angle of 45 ° has the best heat transfer coefficient, followed by 60, 75 and 90 °, respectively. This investigation also introduces the factors which can be used for finding the heat transfer and the pressure drop factor on the tube bundles positioned at different angles to the flow direction. Moreover, no perceptible dependence of Cand C on Re was detected. In addition, flow visualizations were explored to broaden our fundamental understanding of the heat transfer for the present study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号