首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A systematic series of ITO electrodes modified chemically with self-assembled monolayers (SAMs) of porphyrins and porphyrin-fullerene dyads have been designed to provide valuable insight into the development of artificial photosynthetic devices. First the ITO and gold electrodes modified chemically with SAMs of porphyrins with a spacer of the same number of atoms were prepared to compare the effects of energy transfer (EN) quenching of the porphyrin excited singlet states by the two electrodes. Less EN quenching was observed on the ITO electrode as compared to the EN quenching on the corresponding gold electrode, leading to remarkable enhancement of the photocurrent generation (ca. 280 times) in the porphyrin SAMs on the ITO electrode in the presence of the triethanolamine (TEA) used as a sacrificial electron donor. The porphyrin (H(2)P) was then linked with C(60) which can act as an electron acceptor to construct H(2)P-C(60) SAMs on the ITO surface in the presence of hexyl viologen (HV(2+)) used as an electron carrier in a three electrode system, denoted as ITO/H(2)P-C(60)/HV(2+)/Pt. The quantum yield of the photocurrent generation of the ITO/H(2)P-C(60)/HV(2+)/Pt system (6.4%) is 30 times larger than that of the corresponding system without C(60): ITO/H(2)P-ref/HV(2+)/Pt (0.21%). Such enhancement of photocurrent generation in the porphyrin-fullerene dyad system is ascribed to an efficient photoinduced ET from the porphyrin singlet excited state to the C(60) moiety as indicated by the fluorescence lifetime measurements and also by time-resolved transient absorption studies on the ITO systems. The surface structures of H(2)P and H(2)P-C(60) SAMs on ITO (H(2)P/ITO and H(2)P-C(60)/ITO) have been observed successfully in molecular resolution with atomic force microscopy for the first time.  相似文献   

2.
A self-assembled monolayer (SAM) of a C60-triosmium cluster complex Os3(CO)7(CNR)(CNR')(mu3-eta2:eta2:eta2-C60) (ZnP-C60; R = (CH2)3Si(OEt)3, R' = ZnP) on an ITO surface exhibits ideal electrochemical responses as well as remarkable enhancement of the photocurrent generation. The diazabicyclooctane (DABCO) binding (ZnP)-C60/ITO/AsA/Pt cell shows the highest photocurrent generation quantum yield (19.5%) ever reported for the molecular photovoltaic cells based on the covalently linked donor-acceptor dyad structures. The high efficiency in photocurrent generation is ascribed to an efficient electron transfer from photoexcited porphyrin to fullerene, revealed by fluorescence lifetime measurements and transient absorption decay profiles. These results provide valuable information on the new strategy for the construction of molecular photonic devices and artificial photosynthetic systems on ITO electrodes.  相似文献   

3.
We have prepared a variety of porphyrin-fullerene linked systems to mimic photoinduced energy and electron transfer (ET) processes in photosynthesis. Photodynamical studies on porphyrin and analogs-fullerene linked systems have revealed the acceleration of photoinduced electron transfer and charge-shift and the deceleration of charge recombination, which is reasonably explained by the small reorganization energies of electron transfer in fullerenes. In this context, we have proposed two strategies, photoinduced single-step and multi-step electron transfers, for prolonging the lifetime of a charge-separated state in donor-acceptor linked systems. The single-step ET strategy allowed a zinc chlorin-fullerene linked dyad to extend the lifetime up to 120 seconds in frozen PhCN at 123 K, which is the longest value of charge separation ever reported for donor-acceptor linked systems. Unfortunately, however, the quantum yield of formation of the charge-separated state was as low as 12%, probably due to the decay of the precursor exciplex state to the ground state rather than to the favorable complete charge-separated state. In contrast, the multi-step ET strategy has been successfully applied to porphyrin-fullerene linked triads, tetrads, and a pentad. In particular, a ferrocene-porphyrin trimer-fullerene pentad revealed formation of a long-lived charge-separated state (0.53 s in frozen DMF at 163 K) with an extremely high quantum yield (83%), which is comparable to natural bacterial reaction centers. These results not only provide valuable information for a better understanding of photoinduced energy and electron transfer processes in photosynthesis, but also open the door for the development of photoinitiated molecular devices and machines.  相似文献   

4.
Two porphyrin-fullerene dyads were synthesized to form self-assembled monolayers (SAMs) on indium-tin oxide (ITO) electrode, with either ITO-porphyrin-fullerene or ITO-fullerene-porphyrin orientations. The dyads contain two linkers for connecting the porphyrin and fullerene moieties and enforcing them essentially to similar geometries of the donor-acceptor pair, and two linkers to ensure the attachment of the dyads to the ITO surface with two desired opposite orientations. The transient photovoltage responses (Maxwell displacement charge) were measured for the dyad films covered by insulating LB films, thus ensuring that the dyads interact only with the ITO electrode. The direction of the electron transfer was from the photoexcited dyad to ITO independent of the dyad orientation. The response amplitude for the ITO-fullerene-porphyrin structure, where the primary intramolecular electron-transfer direction coincides with the direction of the final electron transfer from the dyad to ITO, was 25 times stronger than that for the opposite ITO-porphyrin-fullerene orientation of the dyad. Static photocurrent measurements in a liquid electrochemical cell, however, show only a minor orientation effect, indicating that the photocurrent generation is controlled by the processes at the SAM-liquid interface.  相似文献   

5.
Compact, rigid, five-legged fullerene derivatives C60R5Me and M(C60R5)Cp (M = Fe and Ru; R = C6H4COOH, C6H4C6H4COOH, and CH2COOH) were synthesized and arrayed on an indium-tin oxide (ITO) surface. These devices exhibit a respectable quantum yield with photocurrent generation up to 18%, and, more importantly, the direction of the photocurrent can be changed not only by the molecular structure itself but also by changing the geometric configuration of the photoactive acceptor (fullerene) and donor (metal atom) on the ITO surface.  相似文献   

6.
A novel surface fabrication methodology has been accomplished, aimed at efficient anodic photocurrent generation by a photoexcited porphyrin on an ITO (indium-tin oxide) electrode. The ITO electrode was submitted to a surface sol-gel process with titanium n-butoxide in order to deposit a titanium monolayer. Subsequently, porphyrins were assembled as monolayers on the titanium-treated ITO surface via phosphonate, isophthalate, and thiolate groups. Slipped-cofacial porphyrin dimers, the so-called artificial special pair at the photoreaction center, were organized through imidazolyl-to-zinc complementary coordination of imidazolylporphyrinatozinc(II) units, which were covalently immobilized by ring-closing olefin metathesis of allyl side chains. The modified surfaces were analyzed by means of X-ray photoelectron spectroscopy. Photoirradiation of the porphyrin dimer generated a large anodic photocurrent in aqueous electrolyte solution containing hydroquinone as an electron sacrificer, due to the small reorganization energy of the dimer. The use of different linker groups led to significant differences in the efficiencies of anodic photocurrent generation. The apparent flat-band potentials evaluated from the photocurrent properties at various pH values and under biased conditions imply that the band structure of the ITO electrode is modified by the anchoring species. The quantum yield for the anodic photocurrent generation by photoexcitation at the Soret band is increased to 15 %, a surprisingly high value without a redox cascade structure on the ITO electrode surface, while excitation at the Q band is not so significant. Extensive exploration of the photocurrent properties has revealed that hot injection of the photoexcited electron from the S2 level into the conduction band of the ITO electrode takes place before internal conversion to the S1* state, through the strong electronic communication of the phosphonyl anchor with the sol-gel-modified ITO surface.  相似文献   

7.
利用LB (Langmuir-Blodgett)技术将含不同链长的卟啉化合物(C4Py, C6Py和C8Py)单层膜转移到ITO (indium-tin oxide)导电玻璃上, 发现其具有良好的光电转换性质. 卟啉化合物修饰后的紫外吸收光谱与光电流工作谱重叠, 表明卟啉化合物起到了敏化光电流产生的效果; 而且电子给体、电子受体和偏压对其敏化效果的实验结果表明: 光诱导电子转移是产生光电响应的主要原因. 而且, 这三个卟啉化合物的光电响应性质与碳链长度相关, 其中含有六个碳链的C6Py表现出最佳的光电转化效果.  相似文献   

8.
A systematic series of ferrocene/porphyrin redox cascade architectures was assembled through a slipped-cofacial porphyrin dimer on ITO electrode in optimizing the anodic photocurrent generation to perform the highest quantum yield compared to reported values on ITO electrodes.  相似文献   

9.
Photocurrent generation from CdSe/ZnS (core/shell) quantum dots (QDs) in a photoelectrochemical cell was proposed to perform a bioaffinity biosensor in this study. The photocurrent of QDs is reversible and methylene blue as an electron transfer mediator causes a four‐fold increase in the photocurrent. We further present quantitative photoelectrochemical detection of biotin conjugated QDs on the avidin immobilized ITO electrodes. A linear calibration graph was obtained in the range of 4 and 18 nM of biotin conjugated QDs with a coefficient of determination of 0.997. Results imply that QDs can be successfully used as photoelectroactive labels for the photoelectrochemical biosensor systems.  相似文献   

10.
在ITO(indium-tin-oxide)透明电极和石英基片上,分别制备了两种C60吡咯环多羧基衍生物的自组装膜,并用接触角、紫外光谱和电化学循环伏安进行表征.测定了这两种自组装膜体系的光电转换性质,研究了电子受体、偏压和光强等因素对它的影响.  相似文献   

11.
Clusters of phthalocyanine and phthalocyanine-perylene diimide have been prepared and electrophoretically deposited on nanostructured SnO2 electrodes. The structure and photoelectrochemical properties of the clusters have been investigated by using UV-visible absorption, dynamic light scattering (DLS), atomic force microscopy (AFM), transmission electron microscopy (TEM), and photoelectrochemical and photodynamical measurements. Enhancement of the photocurrent generation efficiency in the composite system has been achieved relative to that in the phthalocyanine reference system without the perylene diimide. Such information will be valuable for the design of molecular photoelectrochemical devices that exhibit efficient photocurrent generation.  相似文献   

12.
Free-base (P), Zn(II) (P(Zn)), Cu(II) (P(Cu)), Pd(II) (P(Pd)), Ni(II) (P(Ni)), and Co(II) (P(Co)) 5-(4-carboxyphenyl)-10,15,20-tris(4-methylphenyl) porphyrins were designed and synthesized to be employed as spectral senzitizers in photoelectrochemical cells. The dyes were studied adsorbed on SnO(2) nanocrystalline semiconductor and also in Langmuir-Blodgett film ITO electrodes in order to disclose the effect of molecular packing on the studied properties. Electron injection yields were obtained by fluorescence quenching analysis comparing with the dyes adsorbed on a SiO(2) nanocrystalline insulator. Back electron-transfer kinetics were measured by using laser flash photolysis. The unmetallized and metallized molecules have different singlet state energies, fluorescence quantum yields, and redox properties. The quantum yields of sensitized photocurrent generation are shown to be highly dependent on the identity of the central metal. It is shown that P(Ni) and P(Co) do not present a photoelectric effect. The other porhyrins present reproducible photocurrent, P(Pd) being the one that gives the highest quantum yield even in closely packet ITO/LB films. Photocurrent quantum yields increase as the dye ground-state oxidation potential becomes more anodic, which is in agreement with the observation, obtained by laser flash photolysis, that back electron-transfer kinetics decrease with the increase in the driving force for the recombination process. This effect could be exploited as a design element in the development of new and better sensitizers for high-efficiency solar cells involving porphyrins and related dyes.  相似文献   

13.
We have successfully developed a new methodology for the self-organization of C(60) molecules on the sidewall of carbon nanotubes for use in photoelectrochemical devices. Novel nanocarbon composites of fullerene (e.g., C(60)) and highly soluble, chemically functionalized single-walled carbon nanotubes (f-SWNT) have been prepared by the rapid injection of a poor solvent (e.g., acetonitrile) into a mixed solution of C(60) and f-SWNT in o-dichlorobenzene. Measurements by using scanning electron microscopy of cast samples revealed that the composites are categorized into three groups; i) f-SWNT bundles covered with layers of C(60) molecules, ii) round, large C(60) clusters (sizes of 500-1000 nm) containing f-SWNT, and iii) typical, round C(60) clusters (sizes of 150-250 nm). The electrophoretic deposition of the composites onto a nanostructured SnO(2) electrode yielded the hierarchical film with a gradient composition depending on the difference in the mobilities of C(60) and f-SWNT during the electrophoretic process. The composite film exhibited an incident photon-to-photocurrent efficiency as high as 18 % at lambda=400 nm under an applied potential of 0.05 V vs. SCE. The photocurrent generation efficiency is the highest value among carbon nanotube-based photoelectrochemical devices in which carbon nanotubes are deposited electrophoretically, electrostatically or covalently onto semiconducting electrodes. The highly aligned structure of C(60) molecules on f-SWNT can rationalize the efficient photocurrent generation. The results obtained here will provide valuable information on the design of carbon nanotube-based molecular devices.  相似文献   

14.
Continuing progress in the field of organic polymer photovoltaic (PV) devices requires the development of new materials with better charge-transport efficiency. To improve this parameter, we have investigated surface-attached bilayer polymer PV thin films prepared starting from a covalently attached monolayer of an electroactive initiator using sequential electropolymerization of dithiophene and its derivatives. These systems were found to show significantly increased photocurrent generation quantum yields as compared to systems made through conventional approaches. In addition, the described PV thin films possess remarkable mechanical, air, and photostability. These properties likely arise from the more uniform and better ordered bulk layer morphologies as well as tighter covalently bonded contacts at the interfacial junctions, contributing to improved charge transport. While more studies on the fundamental reasons behind the discovered phenomenon are currently underway, this information can be readily applied to build more efficient organic polymer photovoltaics.  相似文献   

15.
Three photocurrent-generating thin films were assembled on gold surfaces. SAM I was constructed from molecules consisting of an alkyl disulfide group linked covalently to a 12-residue helical peptide and terminated with an alanine residue containing a pyrene chromophore. SAM I served as a benchmark for multilayered films II and III in photocurrent generation experiments. Films II and III were assembled from several components that were linked noncovalently by metal-ligand complexation. Cyclic voltammetry and contact angle measurements suggest that the films consist of ordered layers with relatively few defects. Photoexcitation of SAM I by the output of a 350 nm lamp ( approximately 0.2 mW power incident on the sample) results in current generation in the range 5-10 nA/cm2. Photoexcitation of II and III yields higher current in the range 10-30 nA/cm2, representing a quantum efficiency of approximately 1%. The observation of comparable or higher current from noncovalently assembled multicomponent films indicates that this method of assembly may obviate the problems associated with the covalent assembly of devices from large molecules.  相似文献   

16.
Three different kinds of mixed self-assembled monolayers have been prepared to mimic photosynthetic energy and electron transfer on a gold surface. Pyrene and boron-dipyrrin were chosen as a light-harvesting model. The mixed self-assembled monolayers of pyrene (or boron-dipyrrin) and porphyrin (energy acceptor model) reveal photoinduced singlet-singlet energy transfer from the pyrene (or boron-dipyrrin) to the porphyrin on the gold surface. The boron-dipyrrin has also been combined with a reaction center model, ferrocene-porphyrin-fullerene triad, to construct integrated artificial photosynthetic assemblies on a gold electrode using mixed monolayers of the respective self-assembled unit. The mixed self-assembled monolayers on the gold electrode have established a cascade of photoinduced energy transfer and multistep electron transfer, leading to the production of photocurrent output with the highest quantum yield (50 +/- 8%, based on the adsorbed photons) ever reported for photocurrent generation at monolayer-modified metal electrodes and across artificial membranes using donor-acceptor linked molecules. The incident photon-to-current efficiency (IPCE) of the photoelectrochemical cell at 510 and 430 nm was determined as 0.6% and 1.6%, respectively. Thus, the present system provides the first example of an artificial photosynthetic system, which not only mimics light-harvesting and charge separation processes in photosynthesis but also acts as an efficient light-to-current converter in molecular devices.  相似文献   

17.
Multilayered photocurrent generating thin films were fabricated by templated noncovalent assembly via stepwise assembly of molecular components. Each of films I-IV contained an underlying self-assembled monolayer (SAM) consisting of an alkanethiol linked covalently to a 2,6-dicarboxypyridine ligand that served as a binding site for attaching additional molecular components. The SAM subsequently was functionalized by sequential deposition of Cu(II), Co(II), or Fe(III) ions followed by a variety of substituted 2,6-dicarboxypyridine ligands as a means to incorporate one or more layers of pyrene chromophores into the film. The films were characterized by contact angle measurements, ellipsometry, grazing incidence IR, cyclic voltammetry, and impedance spectroscopy after deposition of each layer, confirming the formation of ordered, stable layers. Following incorporation into a three-electrode system, photoexcitation resulted in the generation of a cathodic photocurrent in the presence of methyl viologen and an anodic photocurrent in the presence of triethanolamine. Using this strategy, systems were fabricated that produced up to 89 nA/cm(2) of reproducible photocurrent.  相似文献   

18.
Layered silica/surfactant mesostructured thin films containing chlorophyllous pigments [C13(2)-demethoxycarbonyl-pheophytin b (pyroPheo b) or zinc C13(2)-demethoxycarbonyl-chlorophyll b (Zn-pyroChl b)] have been prepared on an indium tin oxide (ITO) electrode grafted with a chlorophyll derivative possessing a triethoxysilyl group (copper C13(2)-demethoxycarbonyl-chlorophyllide a 3-triethoxysilyl propylamide, Cu-APTES-Chl a) to achieve effective light harvesting and successive photocurrent generation by the mesostructured films. The incorporation of pyroPheo b and Zn-pyroChl b in the mesostructured film resulted in 1.2- and 1.6-fold increases of the photocurrent density, respectively, as compared to the case of an antenna pigment-free film also grafted to a surface-modified ITO electrode. The difference action spectra, between the electrodes with and without the antenna pigments, coincided well with the absorption spectra of the immobilized pigments. Because direct electron injection from the antenna pigments in the mesostructured films to the ITO electrode was scarcely observed, the energy transfer from the antenna pigments to Cu-APTES-Chl a plays an important role for the increase in photocurrent density. The usefulness of the mesostructured films as model systems is discussed in relation to the photosynthetic primary processes of higher plants.  相似文献   

19.
A covalently linked magnesium porphyrin-fullerene (MgPo-C60) dyad was synthesized and its spectral, electrochemical, molecular orbital, and photophysical properties were investigated and the results were compared to the earlier reported zinc porphyrin-fullerene (ZnPo-C60) dyad. The ab initio B3LYP/3-21G(*) computed geometry and electronic structure of the dyad predicted that the HOMO and LUMO are mainly localized on the MgP and C60 units, respectively. In o-dichlorobenzene containing 0.1 M (n-Bu)4NClO4, the synthesized dyad exhibited six one-electron reversible redox reactions within the potential window of the solvent. The oxidation and reduction potentials of the MgP and C60 units indicate stabilization of the charge-separated state. The emission, monitored by both steady-state and time-resolved techniques, revealed efficient quenching of the singlet excited state of the MgP and C60 units. The quenching pathway of the singlet excited MgP moiety involved energy transfer to the appended C60 moiety, generating the singlet excited C60 moiety, from which subsequent charge-separation occurred. The charge recombination rates, k(CR), evaluated from nanosecond transient absorption studies, were found to be 2-3 orders of magnitude smaller than the charge separation rate, k(CS). In o-dichlorobenzene, the lifetime of the radical ion-pair, MgPo*+-C60*-, was found to be 520 ns which is longer than that of ZnPo*+-C60*- indicating better charge stabilization in MgPo-C60. Additional prolongation of the lifetime of MgPo*+-C60*- was achieved by coordinating nitrogenous axial ligands. The solvent effect in controlling the rates of forward and reverse electron transfer is also investigated.  相似文献   

20.
Chemically converted graphene (CCG) covalently linked with porphyrins has been prepared by a Suzuki coupling reaction between iodophenyl-functionalized CCG and porphyrin boronic ester. The covalently linked CCG-porphyrin composite was designed to possess a short, rigid phenylene spacer between the porphyrin and the CCG. The composite material formed stable dispersions in DMF and the structure was characterized by spectroscopic, thermal, and microscopic measurements. In steady-state photoluminescence spectra, the emission from the porphyrin linked to the CCG was quenched strongly relative to that of the porphyrin reference. Fluorescence lifetime and femtosecond transient absorption measurements of the porphyrin-linked CCG revealed a short-lived porphyrin singlet excited state (38 ps) without yielding the porphyrin radical cation, thereby substantiating the occurrence of energy transfer from the porphyrin excited state to the CCG and subsequent rapid decay of the CCG excited state to the ground state. Consistently, the photocurrent action spectrum of a photoelectrochemical device with a SnO(2) electrode coated with the porphyrin-linked CCG exhibited no photocurrent response from the porphyrin absorption. The results obtained here provide deep insight into the interaction between graphenes and π-conjugated systems in the excited and ground states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号