首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new approach for fabricating donor-acceptor assembled systems is demonstrated, based on J-type ordered aggregation of a low-molecular zinc porphyrin derivative and subsequent integration of a pyridylated fullerene derivative with coordination and orientation onto the porphyrin aggregates. This system achieves unusually high efficiencies in fluorescence quenching during one-to-one mixing of the donor and acceptor. Moreover, the Stern-Volmer constant (K(SV)) and association constant (K) of this system are 2520 and 56 times higher, respectively, than those of the corresponding nonassembled system. The quenching efficiency is thermotropically switchable, since ordered-to-disordered transitions are essential characteristics of noncovalent low molecular assemblies.  相似文献   

2.
We have systematically examined the substituent effects of meso-tetraphenylporphyrins on film structures and the photoelectrochemical properties of the composite clusters of free-base porphyrin and C(60) electrophoretically deposited on nanostructured SnO(2) electrodes. The photocurrent generation efficiency was found to correlate with the complexation ability of the porphyrin for C(60). Basically, the incident photon-to-current efficiency (IPCE) value was increased with increasing relative amounts of the porphyrin versus C(60) in the films. The unique molecular arrangement of the porphyrin with the simple, specific substituents (i.e., methoxy groups at the meta-positions of the meso-phenyl rings of tetraphenylporphyrins (3,5-OMeTPP; TPP=tetraphenylporphyrin)) and C(60) on SnO(2) electrodes resulted in the largest IPCE value (ca. 60 %) among this type of photoelectrochemical device. The rapid formation of the composite clusters and microcrystals from the combination of 3,5-OMeTPP and C(60) in a mixed solvent is unique as the association is accelerated by intermolecular interactions (i.e., hydrogen-bonding and CH-pi interactions) between the methoxy groups of the porphyrins and the porphyrin/C(60), in addition to the pi-pi interactions between the porphyrins/C(60) and C(60) molecules. Both the films and single crystals composed of the porphyrin and C(60) exhibited remarkably high electron mobility (7x10(-2) and 0.4 cm(2) V(-1) s(-1)), which is comparable to the value for highly efficient bulk heterojunction solar cells. Our experimental results have successfully demonstrated the importance of nanostructured electron- and hole-transporting pathways in bulk heterojunction solar cells. Such a finding will provide basic and valuable information on the design of molecular photovoltaics at the molecular level.  相似文献   

3.
By means of scanning tunneling microscopy (STM), the self-assembly of two organic donor-acceptor-donor triads (donor=oligo(p-phenylene vinylene) (OPV); acceptor=perylene diimide (PDI)) and their mixtures has been investigated at the liquid/solid interface. Both triads differ in the nature of the substituents and, therefore, in the redox properties of the central perylene diimide unit (H or Cl). Thanks to the submolecular resolution, the distinct electronic properties of the units, within a triad and between the two triads, are reflected by the relative STM contrast in the bias-dependent imaging experiments. Moreover, scanning tunneling spectroscopy reveals an inverse rectifying behavior of the OPV and H-substituted PDI units, which is discussed in the framework of quasi-resonant tunneling. A striking difference is observed for the Cl-substituted triad.  相似文献   

4.
A series of donor-acceptor arrays (C60-oligo-PPV-exTTF; 16-20) incorporating pi-conjugated oligo(phenylenevinylene) wires (oligo-PPV) of different length between pi-extended tetrathiafulvalene (exTTF) as electron donor and C60 as electron acceptor has been prepared by multistep convergent synthetic approaches. The electronic interactions between the three electroactive species present in 16-20 were investigated by UV-visible spectroscopy and cyclic voltammetry (CV). Our studies clearly show that, although the C60 units are connected to the exTTF donors through a pi-conjugated oligo-PPV framework, no significant electronic interactions are observed in the ground state. Interestingly, photoinduced electron-transfer processes over distances of up to 50 Angstroms afford highly stabilized radical ion pairs. The measured lifetimes for the photogenerated charge-separated states are in the range of hundreds of nanoseconds (approximately 500 ns) in benzonitrile, regardless of the oligomer length (i.e., from the monomer to the pentamer). A different lifetime (4.35 micros) is observed for the heptamer-containing array. This difference in lifetime has been accounted for by the loss of planarity of the oPPV moiety that increases with the wire length, as established by semi-empirical (PM3) theoretical calculations carried out with 19 and 20. The charge recombination dynamics reveal a very low attenuation factor (beta = 0.01 +/- 0.005 Angstroms(-1)). This beta value, as well as the strong electron coupling (V approximately 5.5 cm(-1)) between the donor and the acceptor units, clearly reveals a nanowire behavior for the pi-conjugated oligomer, which paves the way for applications in nanotechnology.  相似文献   

5.
Novel pi-extended tetrathiafulvalene (exTTF)-based donor acceptor hybrids-dyads and triads-have been synthesized following a multistep synthetic procedure. Cyclic voltammetry and absorption spectroscopy, conducted in room temperature solutions, reveal features that are identical to the sum of the separate donor and acceptor moieties. Steady-state and time-resolved photolytic techniques confirm that upon photoexcitation of the fullerene chromophore, rapid (1.25 x 10(10) s(-1)) and efficient (67 %) charge separation leads to long-lived, charge-separated radical pairs. Typical lifetimes for the dyad ensembles range between 54 and 460 ns, with the longer values found in more polar solvents. This indicates that the dynamics are located in the 'normal region' of the Marcus curve. In the triads, subsequent charge shifts transform the adjacent radical pair into the distant radical pair, for which we determined lifetimes of up to 111 micros in DMF-values never previously accomplished in molecular triads. In the final charge-separated state, large donor-acceptor separation (center-to-center distances: approximately 30 A) minimizes the coupling between reduced acceptor and oxidized donor. Analysis of the charge recombination kinetics shows that a stepwise mechanism accounts for the unusually long lifetimes.  相似文献   

6.
Novel gold nanoparticles modified with a mixed self-assembled monolayer of porphyrin alkanethiol and short-chain alkanethiol were prepared (first step) to examine the size and shape effects of surface holes (host) on porphyrin-modified gold nanoparticles. The porphyrin-modified gold nanoparticles with a size of about 10 nm incorporated C60 molecules (guest) into the large, bucket-shaped holes, leading to the formation of a supramolecular complex of porphyrin-C60 composites (second step). Large composite clusters with a size of 200-400 nm were grown from the supramolecular complex of porphyrin-C60 composites in mixed solvents (third step) and deposited electrophoretically onto nanostructured SnO2 electrodes (fourth step). Differences in the porphyrin:C60 ratio were found to affect the structures and photoelectrochemical properties of the composite clusters in mixed solvents as well as on the SnO2 electrodes. The photoelectrochemical performance of a photoelectrochemical device consisting of SnO2 electrodes modified with the porphyrin-C60 composites was enhanced relative to a reference system with small, wedged-shaped surface holes on the gold nanoparticle. Time-resolved transient absorption spectroscopy with fluorescence lifetime measurements suggest the occurrence of ultrafast electron transfer from the porphyrin excited singlet states to C60 or the formation of a partial charge-transfer state in the composite clusters of supramolecular complexes formed between porphyrin and C60 leading to efficient photocurrent generation in the system. Elucidation of the relationship between host-guest interactions and photoelectrochemical function in the present system will provide valuable information on the design of molecular devices and machines including molecular photovoltaics.  相似文献   

7.
8.
Herein, the scanning electrochemical microscopy (SECM) approach is applied to study the formation of thiol-porphyrin self-assembled monolayer (SAMs). Using cyclic voltammetry (CV), the formation process is characterized adopting different probe molecules. The observed phenomena indicate that the formation process is affected by solution properties and the molecular structure of the probe molecules. In K(3)Fe(CN)(6) , the SAMs show a strong electron-transfer (ET) blocking effect on a pure porphyrin-modified electrode. However, addition of metal ions to the porphyrin molecules leads to ET. A consistent tendency is observed throughout the modification process using CV and SECM methods. Furthermore, k(eff) values, the apparent heterogeneous rate constants, obtained for different modification periods affirm the validity of these results. SECM images are used to collect surface information in the course of the modification process when the substrate potential is 0.5 V versus Ag/AgCl. The effect of the substrate potential indicates that the oxidation of the porphyrin molecules is supported by more positive potentials because of the similar bimolecular reaction of the porphyrin ring with positive charge and the probe molecules with negative charge.  相似文献   

9.
10.
Two new fullerodendrimers, with two and four ferrocene units on their periphery, have been synthesized by 1,3-dipolar cycloaddition reactions between the corresponding azomethine ylides and C(60). These new compounds have been studied by using cyclic voltammetry and UV/Vis spectroscopy. Weak intramolecular interactions between the fullerene cage and the ferrocene groups have been found. The photochemical events of both fullerene-ferrocene dendrimers have been probed by means of steady-state and time-resolved techniques. The steady-state emission intensities of the fulleropyrrolidine-ferrocene dendrimers 1 and 2 were found to be quenched relative to the N-methylfulleropyrrolidine without substituents that was used as a model. The nanosecond transient absorption spectral studies revealed efficient charge separation in both systems, even in toluene. The lifetimes of the (C(60))(*-)-(dendron)(*+) are higher for the second-generation fullerodendrimer (with four ferrocene units) and they are of the order of tens of nanoseconds in toluene and hundreds of nanoseconds in polar solvents.  相似文献   

11.
A meso,meso-linked porphyrin trimer, (ZnP)3, as a light-harvesting chromophore, has been incorporated for the first time into a photosynthetic multistep electron-transfer model including ferrocene (Fc) as an electron donor and fullerene (C60) as an electron acceptor, to construct the ferrocene-meso,meso-linked porphyrin trimer-fullerene system Fc-(ZnP)3-C60. Photoirradiation of Fc-(ZnP)3-C60 results in photoinduced electron transfer from both the singlet and triplet excited states of the porphyrin trimer, 1(ZnP)3* and 3(ZnP)3*, to the C60 moiety to produce the porphyrin trimer radical cation-C60 radical anion pair, Fc-(ZnP)3*+-C60*-. Subsequent formation of the final charge-separated state Fc+-(ZnP)3-C60*- was confirmed by the transient absorption spectra observed by pico- and nanosecond time-resolved laser flash photolysis. The final charge-separated state decays, obeying first-order kinetics, with a long lifetime (0.53 s in DMF at 163 K) that is comparable with that of the natural bacterial photosynthetic reaction center. More importantly, the quantum yield of formation of the final charge-separated state (0.83 in benzonitrile) remains high, despite the large separation distance between the Fc+ and C60*- moieties. Such a high quantum yield results from efficient charge separation through the porphyrin trimer, whereas a slow charge recombination is associated with the localized porphyrin radical cation in the porphyrin trimer. The light-harvesting efficiency in the visible region has also been much improved in Fc-(ZnP)3-C60 because of exciton coupling in the porphyrin trimer as well as an increase in the number of porphyrins.  相似文献   

12.
A series of donor-acceptor arrays (exTTF-oPPE-C60) containing pi-conjugated oligo(phenyleneethynylene) wires (oPPE) of different length between pi-extended tetrathiafulvalene (exTTF) as electron donor and fullerene (C60) as electron acceptor has been prepared by following a convergent synthesis. The key reaction in these approaches is the bromo-iodo selectivity of the Hagihara-Sonogashira reaction and the deprotecting of acetylenes with different silyl groups to afford the corresponding donor-acceptor conjugates in moderate yields. The electronic interactions between the three electroactive species were determined by using UV-visible spectroscopy and cyclic voltammetry. Our studies clearly confirm that, although the C60 units are connected to the exTTF donor through pi-conjugated oPPE frameworks, no significant electronic interactions are observed in the ground state. Theoretical calculations predict how a simple exchange from C=C double bonds (i.e., oligo(p-phenylenevinylene) to C triple chemical bond C triple bonds (i.e., oPPE) in the electron donor-acceptor conjugates considerably alters long-range electron transfer. Photoexcitation of exTTF-oPPE-C60 leads to the following features: a transient photoproduct with maxima at 660 and 1000 nm, which are unambiguously attributed to the photolytically generated radical-ion-pair state, [exTTF*+-oPPE-C60*]. Both charge-separation and charge-recombination processes give rise to a molecular-wire behaviour of the oPPE moiety with an attenuation factor (beta) of (0.2+/-0.05) A(-1).  相似文献   

13.
We have prepared two complementary series of SubPc-C(60) (SubPc=subphthalocyanine) electron/energy donor-acceptor systems, in which the two constituents are linked through ortho-, meta-, or para-substituted phenoxy spacers. In one of the series (1 a) the SubPc units bear iodine atoms, while in the other series (1 b) diphenylamino groups are linked to the SubPc macrocycles. The iodine atoms and diphenylamino groups both influence the resulting oxidation potentials of the electron-donating SubPc. They also modulate the outcome of excited state interactions, namely, energy and/or charge transfer. In addition, we have studied the impact that the substitution pattern in the phenoxy spacer exerts onto intramolecular processes in the ground and excited states. Although some of these processes are governed by the spatial separation between both components, the different electronic coupling through ortho-, meta-, or para- connections also plays decisive roles in some cases.  相似文献   

14.
The charge-recombination dynamics of two exTTF-C60 dyads (exTTF = 9,10-bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene), observed after photoinduced charge separation, are compared in solution and in the solid state. The dyads differ only in the degree of conjugation of the bridge between the donor (exTTF) and the acceptor (C60) moieties. In solution, photoexcitation of the nonconjugated dyad C60-BN-exTTF (1) (BN = 1,1'-binaphthyl) shows slower charge-recombination dynamics compared with the conjugated dyad C60-TVB-exTTF (2) (TVB = bisthienylvinylenebenzene) (lifetimes of 24 and 0.6 micros, respectively), consistent with the expected stronger electronic coupling in the conjugated dyad. However, in solid films, the dynamics are remarkably different, with dyad 2 showing slower recombination dynamics than 1. For dyad 1, recombination dynamics for the solid films are observed to be tenfold faster than in solution, with this acceleration attributed to enhanced electronic coupling between the geminate radical pair in the solid film. In contrast, for dyad 2, the recombination dynamics in the solid film exhibit a lifetime of 7 micros, tenfold slower than that observed for this dyad in solution. These slow recombination dynamics are assigned to the dissociation of the initially formed geminate radical pair to free carriers. Subsequent trapping of the free carriers at film defects results in the observed slow recombination dynamics. It is thus apparent that consideration of solution-phase recombination data is of only limited value in predicting the solid-film behaviour. These results are discussed with reference to the development of organic solar cells based upon molecular donor-acceptor structures.  相似文献   

15.
One-dimensional charge-transfer nanostructures were constructed by the supramolecular coassembly of amphiphilic (Amph-TTF) and hydrophobic (TDD-TTF) tetrathiafulvalene (TTF) donor derivatives with the acceptor 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F(4)TCNQ), in appropriate solvent composition mixtures. Microscopic analyses show that TDD-TTF retains its self-assembled fibrillar morphology even in the charge-transfer state, whereas Amph-TTF undergoes a spherical to nanorod transition upon coassembly. Time-dependent optical spectroscopy studies have shown a spontaneous change in molecular organization in TDD-TTF-based donor-acceptor costacks, which suggests a dynamic behavior, in contrast to the kinetically stable amphiphilic TTF assemblies. We have also tried to get an insight into the observed time-dependent change in molecular packing of these nanostructures through spectroscopic analyses by commenting on whether the TTF-TCNQ pair is cofacially arranged or present in the classical herringbone (orthogonal) fashion. Furthermore, our two-probe electrical measurements showed that these charge-transfer fibers are conducting. A supramolecular approach that yields 1D charge-transfer nanostructures of donor and acceptor molecules will be an alternative to existing crystalline substances with high conductivity and hence can be a viable tool for nanoelectronics.  相似文献   

16.
The photophysical properties of a supramolecular fullerene–porphyrin ensemble resulting from the self‐assembly of a pyrrolidinofullerene–imidazole derivative ( F1 ) with a multimetalloporphyrin array constructed around a hexasubstituted fullerene core ( F(ZnP)12 ) have been investigated. The fullerene hexa‐adduct core of the host system does not play any active role in the cascade of photoinduced events of the supramolecular ensemble, indeed no intercomponent photoinduced processes could be observed in host F(ZnP)12 . In contrast, upon axial coordination with the monosubstituted fullerene guest F1 , a quantitative quenching of the fluorescence signal of the metalloporphyrins was observed for the supramolecular complex [F(ZnP)12(F1) n ] both in polar and nonpolar solvents. In toluene, the supramolecular ensemble exhibits a charge transfer emission centered around 930 nm, suggesting the occurrence of intramolecular face‐to‐face interactions of F1 with neighboring metalloporphyrin moieties within the self‐assembled photoactive array. This mechanism is supported by the fact that a one order of magnitude increase in the binding constant was observed for the supramolecular complex [F(ZnP)12(F1) n ] when compared with a reference system lacking the pyrrolidinofullerene unit. In benzonitrile, a long‐lived charge‐separated state (τ=0.3 μs) has been detected for the supramolecular adduct.  相似文献   

17.
A series of zinc(II) porphyrin-imide dyads (ZP-Im), in which an electron donating ZP moiety is directly connected to an electron accepting imide moiety in the meso position, have been prepared for the examination of energy gap dependence of intramolecular electron transfer reactions with large electronic coupling. The nearly perpendicular conformation of the imide moiety towards the porphyrin plane has been revealed by Xray crystal structures. The energy gap for charge separation, 1ZP* - Im --> ZP+ - Im-, is varied by changing the electron accepting imide moiety to cover a range of about 0.8 eV in DMF. Definitive evidence for electron transfer has been obtained in three solvents (toluene, THF, and DMF) through picosecond-femtosecond transient absorption studies, which have allowed us to determine the rates of photoinduced charge separation, 1ZP* - Im --> ZP+ - Im-, and subsequent thermal charge recombination ZP+ - Im- --> ZP - Im. The free-energy gap dependence (energy gap law) has been probed from the normal to the nearly top region for the charge separation rate alone, and only the inverted region for the charge recombination rate. Although both of the energy gap dependencies can be approximately reproduced by means of the simplified semiclassical equation, when we take into consideration the effect of the high frequency vibrations replaced by one mode of averaged frequency, many features, including the effects of solvent polarity and the electron tunneling matrix element on the energy gap law, differ considerably from those of the previously studied porphyrin-quinone systems, which have weaker interchromophore electronic interactions.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号