首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we analyze the bi-conjugate gradient algorithm in finite precision arithmetic, and suggest reasons for its often observed robustness. By using a tridiagonal structure, which is preserved by the finite precision bi-conjugate gradient iteration, we are able to bound its residual norm by a minimum polynomial of a perturbed matrix (i.e. the residual norm of the exact GMRES applied to a perturbed matrix) multiplied by an amplification factor. This shows that occurrence of near-breakdowns or loss of biorthogonality does not necessarily deter convergence of the residuals provided that the amplification factor remains bounded. Numerical examples are given to gain insights into these bounds.

  相似文献   


2.
We propose a new and more stable variant of the CGS method [27] for solving nonsymmetric linear systems. The method is based on squaring the Composite Step BCG method, introduced recently by Bank and Chan [1,2], which itself is a stabilized variant of BCG in that it skips over steps for which the BCG iterate is not defined and causes one kind of breakdown in BCG. By doing this, we obtain a method (Composite Step CGS or CSCGS) which not only handles the breakdowns described above, but does so with the advantages of CGS, namely, no multiplications by the transpose matrix and a faster convergence rate than BCG. Our strategy for deciding whether to skip a step does not involve any machine dependent parameters and is designed to skip near breakdowns as well as produce smoother iterates. Numerical experiments show that the new method does produce improved performance over CGS on practical problems.Partially supported by the Office of Naval Research grant N00014-92-J-1890, the National Science Foundation grant ASC92-01266, and the Army Research Office grant DAAL03-91-G-150.  相似文献   

3.
We present a transpose-free version of the nonsymmetric scaled Lanczos procedure. It generates the same tridiagonal matrix as the classical algorithm, using two matrix–vector products per iteration without accessing AT. We apply this algorithm to obtain a transpose-free version of the Quasi-minimal residual method of Freund and Nachtigal [15] (without look-ahead), which requires three matrix–vector products per iteration. We also present a related transpose-free version of the bi-conjugate gradients algorithm. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Weighted FOM and GMRES for solving nonsymmetric linear systems   总被引:1,自引:0,他引:1  
Essai  Azeddine 《Numerical Algorithms》1998,18(3-4):277-292
This paper presents two new methods called WFOM and WGMRES, which are variants of FOM and GMRES, for solving large and sparse nonsymmetric linear systems. To accelerate the convergence, these new methods use a different inner product instead of the Euclidean one. Furthermore, at each restart, a different inner product is chosen. The weighted Arnoldi process is introduced for implementing these methods. After describing the weighted methods, we give the relations that link them to FOM and GMRES. Experimental results are presented to show the good performances of the new methods compared to FOM(m) and GMRES(m). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
The technique that was used to build the eigCG algorithm for sparse symmetric linear systems is extended to the nonsymmetric case using the BiCG algorithm. We show that, similar to the symmetric case, we can build an algorithm that is capable of computing a few smallest magnitude eigenvalues and their corresponding left and right eigenvectors of a nonsymmetric matrix using only a small window of the BiCG residuals while simultaneously solving a linear system with that matrix. For a system with multiple right‐hand sides, we give an algorithm that computes incrementally more eigenvalues while solving the first few systems and then uses the computed eigenvectors to deflate BiCGStab for the remaining systems. Our experiments on various test problems, including Lattice QCD, show the remarkable ability of eigBiCG to compute spectral approximations with accuracy comparable with that of the unrestarted, nonsymmetric Lanczos. Furthermore, our incremental eigBiCG followed by appropriately restarted and deflated BiCGStab provides a competitive method for systems with multiple right‐hand sides. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Preconditioned Krylov subspace (KSP) methods are widely used for solving large‐scale sparse linear systems arising from numerical solutions of partial differential equations (PDEs). These linear systems are often nonsymmetric due to the nature of the PDEs, boundary or jump conditions, or discretization methods. While implementations of preconditioned KSP methods are usually readily available, it is unclear to users which methods are the best for different classes of problems. In this work, we present a comparison of some KSP methods, including GMRES, TFQMR, BiCGSTAB, and QMRCGSTAB, coupled with three classes of preconditioners, namely, Gauss–Seidel, incomplete LU factorization (including ILUT, ILUTP, and multilevel ILU), and algebraic multigrid (including BoomerAMG and ML). Theoretically, we compare the mathematical formulations and operation counts of these methods. Empirically, we compare the convergence and serial performance for a range of benchmark problems from numerical PDEs in two and three dimensions with up to millions of unknowns and also assess the asymptotic complexity of the methods as the number of unknowns increases. Our results show that GMRES tends to deliver better performance when coupled with an effective multigrid preconditioner, but it is less competitive with an ineffective preconditioner due to restarts. BoomerAMG with a proper choice of coarsening and interpolation techniques typically converges faster than ML, but both may fail for ill‐conditioned or saddle‐point problems, whereas multilevel ILU tends to succeed. We also show that right preconditioning is more desirable. This study helps establish some practical guidelines for choosing preconditioned KSP methods and motivates the development of more effective preconditioners.  相似文献   

7.
The solution of nonsymmetric systems of linear equations continues to be a difficult problem. A main algorithm for solving nonsymmetric problems is restarted GMRES. The algorithm is based on restarting full GMRES every s iterations, for some integer s>0. This paper considers the impact of the restart frequency s on the convergence and work requirements of the method. It is shown that a good choice of this parameter can lead to reduced solution time, while an improper choice may hinder or preclude convergence. An adaptive procedure is also presented for determining automatically when to restart. The results of numerical experiments are presented.  相似文献   

8.
An improved parallel hybrid bi-conjugate gradient method (IBiCGSTAB(2) method, in brief) for solving large sparse linear systems with nonsymmetric coefficient matrices is proposed for distributed parallel environments. The method reduces five global synchronization points to two by reconstructing the BiCGSTAB(2) method in [G.L.G. Sleijpen, H.A. van der Vorst, Hybrid bi-conjugate gradient methods for CFD problems, in: M. Hafez, K. Oshima (Eds.), Computational Fluid Dynamics Review 1995, John Wiley & Sons Ltd, Chichester, 1995, pp. 457–476] and the communication time required for the inner product can be efficiently overlapped with useful computation. The cost is only slightly increased computation time, which can be ignored, compared with the reduction of communication time. Performance and isoefficiency analysis shows that the IBiCGSTAB(2) method has better parallelism and scalability than the BiCGSTAB(2) method. Numerical experiments show that the scalability can be improved by a factor greater than 2.5 and the improvement in parallel communication performance approaches 60%.  相似文献   

9.
A flexible version of the CMRH algorithm is presented that allows varying preconditioning at every step of the algorithm. A consequence of the flexibility of this new variant is that any iterative methods can be incorporated as a preconditioner in the inner steps. Theoretical results that relate the residual norm of the new algorithm and the flexible GMRES, the new algorithm with CMRH itself, are given. Numerical experiments are carried out to illustrate the effectiveness of the proposed algorithm in comparison with the standard CMRH algorithm, ILU-preconditioned CMRH variants and the flexible GMRES algorithm.  相似文献   

10.
The Generalized Minimal Residual (GMRES) method and the Quasi-Minimal Residual (QMR) method are two Krylov methods for solving linear systems. The main difference between these methods is the generation of the basis vectors for the Krylov subspace. The GMRES method uses the Arnoldi process while QMR uses the Lanczos algorithm for constructing a basis of the Krylov subspace. In this paper we give a new method similar to QMR but based on the Hessenberg process instead of the Lanczos process. We call the new method the CMRH method. The CMRH method is less expensive and requires slightly less storage than GMRES. Numerical experiments suggest that it has behaviour similar to GMRES. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
By transforming nonsymmetric linear systems to the extended skew-symmetric ones, we present the skew-symmetric methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on the block and global Arnoldi algorithm which is formed by implementing orthogonal projections of the initial matrix residual onto a matrix Krylov subspace. The algorithms avoid the tediously long Arnoldi process and highly reduce expensive storage. Numerical experiments show that these algorithms are effective and give better practical performances than global GMRES for solving nonsymmetric linear systems with multiple right-hand sides.  相似文献   

12.
Despite its usefulness in solving eigenvalue problems and linear systems of equations, the nonsymmetric Lanczos method is known to suffer from a potential breakdown problem. Previous and recent approaches for handling the Lanczos exact and near-breakdowns include, for example, the look-ahead schemes by Parlett-Taylor-Liu [23], Freund-Gutknecht-Nachtigal [9], and Brezinski-Redivo Zaglia-Sadok [4]; the combined look-ahead and restart scheme by Joubert [18]; and the low-rank modified Lanczos scheme by Huckle [17]. In this paper, we present yet another scheme based on a modified Krylov subspace approach for the solution of nonsymmetric linear systems. When a breakdown occurs, our approach seeks a modified dual Krylov subspace, which is the sum of the original subspace and a new Krylov subspaceK m (w j ,A T ) wherew j is a newstart vector (this approach has been studied by Ye [26] for eigenvalue computations). Based on this strategy, we have developed a practical algorithm for linear systems called the MLAN/QM algorithm, which also incorporates the residual quasi-minimization as proposed in [12]. We present a few convergence bounds for the method as well as numerical results to show its effectiveness.Research supported by Natural Sciences and Engineering Research Council of Canada.  相似文献   

13.
In this paper, a practical two‐term acceleration algorithm is proposed, the interval of the parameter which guarantees the convergence of the acceleration algorithm is analyzed in detail. Further, the acceleration ratio of the new acceleration algorithm is obtained in advance. The new acceleration algorithm is less sensitive to the parameter than the Chebyshev semi‐iterative method. Finally, some numerical examples show that the accelerated algorithm is effective. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The Conjugate Gradient (CG) method and the Conjugate Residual (CR) method are Krylov subspace methods for solving symmetric (positive definite) linear systems. To solve nonsymmetric linear systems, the Bi-Conjugate Gradient (Bi-CG) method has been proposed as an extension of CG. Bi-CG has attractive short-term recurrences, and it is the basis for the successful variants such as Bi-CGSTAB. In this paper, we extend CR to nonsymmetric linear systems with the aim of finding an alternative basic solver. Numerical experiments show that the resulting algorithm with short-term recurrences often gives smoother convergence behavior than Bi-CG. Hence, it may take the place of Bi-CG for the successful variants.  相似文献   

15.
A framework is proposed for constructing algebraic multigrid transfer operators suitable for nonsymmetric positive definite linear systems. This framework follows a Schur complement perspective as this is suitable for both symmetric and nonsymmetric systems. In particular, a connection between algebraic multigrid and approximate block factorizations is explored. This connection demonstrates that the convergence rate of a two‐level model multigrid iteration is completely governed by how well the coarse discretization approximates a Schur complement operator. The new grid transfer algorithm is then based on computing a Schur complement but restricting the solution space of the corresponding grid transfers in a Galerkin‐style so that a far less expensive approximation is obtained. The final algorithm corresponds to a Richardson‐type iteration that is used to improve a simple initial prolongator or a simple initial restrictor. Numerical results are presented illustrating the performance of the resulting algebraic multigrid method on highly nonsymmetric systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
We study the common linear copositive Lyapunov functions of positive linear systems. Firstly, we present a theorem on pairs of second order positive linear systems, and give another proof of this theorem by means of properties of geometry. Based on the process of the proof, we extended the results to a finite number of second order positive linear systems. Then we extend this result to third order systems. Finally, for higher order systems, we give some results on common linear copositive Lyapunov functions.  相似文献   

17.
This paper introduces thelocally Farkas-Minkowski (LFM) linear inequality systems in a finite dimensional Euclidean space. These systems are those ones that satisfy that any consequence of the system that is active at some solution point is also a consequence of some finite subsystem. This class includes the Farkas-Minkowski systems and verifies most of the properties that these systems possess. Moreover, it contains the locally polyhedral systems, which are the natural external representation of quasi-polyhedral sets. TheLFM systems appear to be the natural external representation of closed convex sets. A characterization based on their properties under the union of systems is provided. In linear semi-infinite programming, theLFM property is the more general constraint qualification such that the Karush-Kuhn-Tucker condition characterizes the optimal points. Furthermore, the pair of Haar dual problems has no duality gap.  相似文献   

18.
We describe the parallelisation of the GMRES(c) algorithm and its implementation on distributed-memory architectures, using both networks of transputers and networks of workstations under the PVM message-passing system. The test systems of linear equations considered are those derived from five-point finite-difference discretisations of partial differential equations. A theoretical model of the computation and communication phases is presented which allows us to decide for which values of the parameterc our implementation executes efficiently. The results show that for reasonably large discretisation grids the implementations are effective on a large number of processors.  相似文献   

19.
This paper introduces and presents theoretical analyses of constraint preconditioning via a Schilders'‐like factorization for nonsymmetric saddle‐point problems. We extend the Schilders' factorization of a constraint preconditioner to a nonsymmetric matrix by using a different factorization. The eigenvalue and eigenvector distributions of the preconditioned matrix are determined. The choices of the parameter matrices in the extended Schilders' factorization and the implementation of the preconditioning step are discussed. An upper bound on the degree of the minimum polynomial for the preconditioned matrix and the dimension of the corresponding Krylov subspace are determined, as well as the convergence behavior of a Krylov subspace method such as GMRES. Numerical experiments are presented. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
A class of negative matrices including Vandermonde-like matrices tends to be extremely ill-conditioned, and linear systems associated with this class of matrices appear in the polynomial interpolation problems. In this article, we present a fast and accurate algorithm with O ( n 2 ) $$ O\left({n}^2\right) $$ complexity to solve the linear systems whose coefficient matrices belong to the class of negative matrix. We show that the inverse of any such matrix is generated in a subtraction-free manner. Consequently, the solutions of linear systems associated with the class of negative matrix are accurately determined by parameterization matrices of coefficient matrices, and a pleasantly componentwise forward error is provided to illustrate that each component of the solution is computed to high accuracy. Numerical experiments are performed to confirm the claimed high accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号