首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purified LiAlH4 reacts with fluorinated alcohols HORF to give LiAl(ORF)4 (RF=-CH(CF3)2, 2a; -C(CH3)(CF3)2, 2b; -C(CF3)3, 2c) in 77 to 90% yield. The crude lithium aluminates LiAl(ORF)4 react metathetically with AgF to give the silver aluminates AgAl(ORF)4 (RF=-CH(CF3)2, 3a; -C(CH3)(CF3)2, 3b; -C(CF3)3, 3c) in almost quantitative yield. The solid-state structures of solvated 3a-c showed that the silver cation is only weakly coordinated (CN(Ag)=6-10; CN = coordination number) by the solvent and/or weak cation - anion contacts Ag-X (X=O, F, Cl, C). The strength of the Ag-X contacts of 3a-c was analysed by Brown's bond-valence method and then compared with other silver salts of weakly coordinating anions (WCAs), for example [CB11H6Cl6]- and [M(OTeF5)n]- (M=B, Sb, n=4, 6). Based on this quantitative picture we showed that the Al[OC(CF3)3]4 anion is one of the most weakly coordinating anions known. Moreover, the AgAl(ORF)4 species are certainly the easiest WCAs to access preparatively (20 g in two days), additionally at low cost. The Al-O bond length of Al(ORF)4- is shortest in the sterically congested Al[OC(CF3)3]4- anion-which is stable in H2O and aqueous HNO3 (35 weight%)--and indicates a strong and highly polar Al-O bond that is resistant towards heterolytic alkoxide ion abstraction. This observation was supported by a series of HF-DFT calculations of OR-, Al(OR)3 and Al(OR)4- at the MPW1PW91 and B3LYP levels (R= CH3, CF3, C(CF3)3). The alkoxide ion affinity (AIA) is highest for R=CF3 (AlA=384 +/- 9 kJ x mol(-1)) and R= C(CF3)3 (AIA=390 +/- 3 kJ x mol(-1)), but lowest for R=CH3 (AIA=363 +/- 7 kJ X mol(-1)). The gaseous AL(ORF)4-anions are stable against the action of the strong Lewis acid ALF3(g) by 88.5 +/- 2.5 (RF=CF3) and 63 +/- 12 kJ X mol(-1) (RF=C(CF3)3), while AL(OCH3)4- decomposes with -91 +/- 2 kJ X mol(-1). Therefore the presented fluorinated aluminates AL(ORF)4- appear to be ideal candidates when large and resistant WCAs are needed, for example, in cationic homogenous catalysis, for highly electrophilic cations or for weak cationic Lewis acid/base complexes.  相似文献   

2.
NO[Al(OC(CF(3))(2)Ph)(4)] 1 and NO[Al(OC(CF(3))(3))(4)] 2 were obtained by the metathesis reaction of NO[SbF(6)] and the corresponding Li[Al(OR)(4)] salts in liquid sulfur dioxide solution in ca 40% (1) and 85% (2) isolated yield. 1 and 2, as well as Li[NO(3)] and N(2)O, were also given by the reaction of an excess of mixture of (90 mol%) NO, (10 mol%) NO(2) with Li[Al(OR)(4)] followed by extraction with SO(2). The unfavourable disproportionation reaction of 2NO(2)(g) to [NO](+)(g) and [NO(3)](-)(g)[DeltaH degrees = +616.2 kJ mol(-1)] is more than compensated by the disproportionation energy of 3NO(g) to N(2)O(g) and NO(2)(g)[DeltaH degrees =-155.4 kJ mol(-1)] and the lattice energy of Li[NO(3)](s)[U(POT)= 862 kJ mol(-1)]. Evidence is presented that the reaction proceeds via a complex of [Li](+) with NO, NO(2)(or their dimers) and N(2)O. NO(2) and Li[Al(OC(CF(3))(3))(4)] gave [NO(3)(NO)(3)][Al(OC(CF(3))(3))(4)](2), NO[Al(OC(CF(3))(3))(4)] and (NO(2))[Al(OC(CF(3))(3))(4)] products. The aluminium complex [Li[AlF(OC(CF(3))(2)Ph)(3)]](2) 3 was prepared by the thermal decomposition of Li[Al(OC(CF(3))(2)Ph)(4)]. Compounds 1 and 3 were characterized by single crystal X-ray structural analyses, 1-3 by elemental analyses, NMR, IR, Raman and mass spectra. Solid 1 contains [Al(OC(CF(3))(2)Ph)(4)](-) and [NO](+) weakly linked via donor acceptor interactions, while in the SO(2) solution there is an equilibrium between the associated [NO](+)[Al(OC(CF(3))(2)Ph)(4)](-) and separated solvated ions. Solid 2 contains essentially ionic [NO](+) and [Al(OC(CF(3))(3))(4)](-). Complex 3 consists of two [Li[AlF(OC(CF(3))(2)Ph)(3)]] units linked via fluorine lithium contacts. Compound 1 is unstable in the SO(2) solution and decomposes to yield [AlF(OC(CF(3))(2)Ph)(3)](-), [(PhC(CF(3))(2)O)(3)Al(mu-F)Al(OC(CF(3))(2)Ph)(3)](-) anions as well as (NO)C(6)H(4)C(CF(3))(2)OH, while compound 2 is stable in liquid SO(2). The [small nu](NO(+)) in 1 and [NO](+)(toluene)[SbCl(6)] are similar, implying similar basicities of [Al(OC(CF(3))(2)Ph)(4)](-) and toluene.  相似文献   

3.
The title compound [2,6-Mes(2)C(2)H(3)](2)Ga(+)Li[Al(OCH(CF(3))(2))(4)](2)(-), 1, containing a linear two-coordinate gallium cation, has been obtained by metathesis reaction of [2,6-Mes(2)C(2)H(3)](2)GaCl with 2 equiv of Li[Al(OCH(CF(3))(2))(4)] in C(6)H(5)Cl solution at room temperature. Compound 1 has been characterized by (1)H, (13)C((1)H), (19)F, and (27)Al NMR spectroscopy and X-ray crystallography. Compound 1 consists of isolated [2,6-Mes(2)C(6)H(3)](2)Ga(+) cations and Li[Al(OCH(CF(3))(2))(4)](2)(-) anions. The C-Ga-C angle is 175.69(7) degrees, and the Ga-C distances are 1.9130(14) and 1.9145(16) A. The title compound is remarkably stable, is only a weak Lewis acid, and polymerizes cyclohexene oxide.  相似文献   

4.
Nitrosylruthenium complexes containing 2,2':6',2"-terpyridine (terpy) have been synthesized and characterized. The three alkoxo complexes trans-(NO, OCH3), cis-(Cl, OCH3)-[RuCl(OCH3)(NO)(terpy)]PF6 ([2]PF6), trans-(NO, OC2H5), cis-(Cl, OC2H5)-[RuCl(OC2H5)(NO)(terpy)]PF6 ([3]PF6), and [RuCl(OC3H7)(NO)(terpy)]PF6 ([4]PF6) were synthesized by reactions of trans-(Cl, Cl), cis-(NO, Cl)-[RuCl2(NO)(terpy)]PF6 ([1]PF6) with NaOCH3 in CH3OH, C2H5OH, and C3H7OH, respectively. Reactions of [3]PF6 with an acid such as hydrochloric acid and trifluoromethansulforic acid afford nitrosyl complexes in which the alkoxo ligand is substituted. The geometrical isomer of [1]PF6, trans-(NO, Cl), cis-(Cl, Cl)-[RuCl2(NO)(terpy)]PF6 ([5]PF6), was obtained by the reaction of [3]PF6 in a hydrochloric acid solution. Reaction of [3]PF6 with trifluoromethansulforic acid in CH3CN gave trans-(NO, Cl), cis-(CH3CN, Cl)-[RuCl(CH3CN)(NO)(terpy)]2+ ([6]2+) under refluxing conditions. The structures of [3]PF6, [4]PF6.CH3CN, [5]CF3SO3, and [6](PF6)2 were determined by X-ray crystallograpy.  相似文献   

5.
This article describes BP86/SV(P) (DFT) calculations on a representative set of weakly coordinating anions (WCAs) of type [M(L)n]-, their parent neutral Lewis acids M(L)(n-1) and their ate complexes with fluoride, that is, [FM(L)(n)](n-1) (M=B, L=F, OTeF5, C6H5, C6F5, C6H3(CF3)2, CF3; M=P, As, Sb, L=F, OTeF5; M=Al, L=OC(CF3)3). Compounds with fluoride bridges, that is, Sb(n)F(5n) and [Sb(n)F(5n+1)]- (n=2, 3, 4), Al2(L)5F and [(L)3Al-F-Al(L)3]- (L=OC(CF3)3), (F4C6[1,2-B(L)2]2, [F4C6[1,2-B(L)2]2F]-, [F4C6[1,2-B(L)2]2OMe]- (L=C6F5) were also calculated. Based on these BP86/SV(P) and auxiliary MP2/TZVPP, G2, and CBS-Q calculations the relative stabilities and coordinating abilities of these WCAs were established with regard to the fluoride ion affinities (FIA) of the parent Lewis acids, the ligand affinity (LA) of the WCAs, the decomposition of a given WCA in the presence of a hard (H+, proton decomposition PD) and a soft electrophile (Cu+, copper decomposition CuD), the position of the HOMO, the HOMO-LUMO gap, and population analyses of the anions providing partial charges for all atoms. To obtain data that is more reliable, the assessed quantities were calculated through isodesmic reactions. If parts of the calculations could not be done isodesmically, higher levels such as MP2/TZVPP, G2, and CBS-Q were used to obtain reliable values for these reactions. Although the obtained results can not be taken as absolute, the relative ordering of the stabilities of all WCAs will undoubtedly be correct, since a single methodology was chosen for the investigation. To include media effects the decomposition reactions of a subset of 14 WCAs with the SiMe3+ and [Cp2ZrMe]+ ions were also calculated in PhCl and 1,2-F2C6H4 (COSMO solvation model). We found that in most cases gas-phase calculations and solution calculations give comparable results for the stability of the anion. Applications of the LA and FIA that allow one to decide, on thermodynamic grounds, which WCA or Lewis acid is the most suitable for a given problem are sketched.  相似文献   

6.
The silver aluminates AgAl[OC(CF3)2(R)]4 (R = H, CH3, CF3) react with solutions of white phosphorus P4 to give complexes that bind one or two almost undistorted tetrahedral P4 molecules in an fashion: [Ag(P4)2]+[Al(OC(CF3)3)4]+ (1) containing the first homoleptic metal-phosphorus cation, the molecular species (P4)AgAl[OC(CH3)(CF3)2]4 (2), and the dimeric Ag(mu,eta2-P4)Ag bridged [(P4)AgAl[OC(H)(CF3)2]4]2 (3). Compounds 1-3 were characterized by variable-temperature (VT) 31P NMR spectroscopy (1 also by VT 32P MAS-NMR spectroscopy), Raman spectroscopy, and single-crystal X-ray crystallography. Other Ag:P4 ratios did not lead to new species, and this observation was rationalized on thermodynamic grounds. The Ag(P4)2+ ion has an almost planar coordination environment around the Ag+ ion due to d(x2 - y2)(Ag) --> sigma*(P-P) backbonding. Calculations (HF-DFT) on six Ag(P4)2+ isomers 4a-f showed that the planar eta2 form 4a is only slightly favored by 5.2 kJ mol(-1) over the tetrahedral eta2 species 4b; eta1-P4 and eta3-P4 complexes are less favorable (27-76 kJ mol(-1)). The bonding of the P4 moiety in [RhCl(eta2-P4)(PPh3)2], the only compound in which an eta2 bonding mode of a tetrahedral P4 molecule has been claimed, must be regarded as a tetraphosphabicyclobutane, and not as a tetrahedro-P4 complex, on the basis of the published NMR and vibrational spectra, the calculated geometry of [RhCl(P4)(PH3)2] (10), the highly endothermic (385 kJ mol(-1)) calculated dissociation enthalpy of 10 into P4 and RhCl(PH3)2 (11), as well as atoms in molecules (AIM) and natural bond orbital (NBO) population analyses of 10 and the Ag(P4)2+ ion. Therefore, 1-3 are the first examples of species containing eta2-coordinated tetrahedral P4 molecules.  相似文献   

7.
The methylidene scandium complex (PNP)Sc(mu3-CH2)(mu2-CH3)2[Al(CH3)2]2 (PNP = N[2-P(CHMe2)2-4-methylphenyl]2-) can be prepared from the reaction of (PNP)Sc(CH3)2 and 2 equiv of Al(CH3)3. The Lewis acid stabilized methylidenes candium complex has been crystallographically characterized, and its bonding scheme analyzed by DFT. In addition, we report preliminary reactivity studies of the Sc-CH2 ligand with substrates such as H2NAr and OCPh2. While the former results in an Br?nsted acid-base reaction, the latter reagent produces the olefin H2C CPh2 along with the novel oxoscandium complex (PNP)Sc(mu3-O)(mu2-CH3)2[Al(CH3)2]2, quantitatively.  相似文献   

8.
The reaction of [RuCl(CNN)(dppb)] (1; HCNN=6-(4-methylphenyl)-2-pyridylmethylamine) with NaOiPr in 2-propanol/C6D6 affords the alcohol adduct alkoxide [Ru(OiPr)(CNN)(dppb)].n iPrOH (5), containing the Ru-NH2 linkage. The alkoxide [Ru(OiPr)(CNN)(dppb)] (4) is formed by treatment of the hydride [Ru(H)(CNN)(dppb)] (2) with acetone in C6D6. Complex 5 in 2-propanol/C6D6 equilibrates quickly with hydride 2 and acetone with an exchange rate of (5.4+/-0.2) s(-1) at 25 degrees C, higher than that found between 4 and 2 ((2.9+/-0.4) s(-1)). This fast process, involving a beta-hydrogen elimination versus ketone insertion into the Ru-H bond, occurs within a hydrogen-bonding network favored by the Ru-NH2 motif. The cationic alcohol complex [Ru(CNN)(dppb)(iPrOH)](BAr(f)4) (6; Ar(f)=3,5-C6H3(CF3)2), obtained from 1, Na[BAr(f)4], and 2-propanol, reacts with NaOiPr to afford 5. Complex 5 reacts with either 4,4'-difluorobenzophenone through hydride 2 or with 4,4'-difluorobenzhydrol through protonation, affording the alkoxide [Ru(OCH(4-C6H4F)2)(CNN)(dppb)] (7) in 90 and 85 % yield of the isolated product. The chiral CNN-ruthenium compound [RuCl(CNN)((S,S)-Skewphos)] (8), obtained by the reaction of [RuCl2(PPh3)3] with (S,S)-Skewphos and orthometalation of HCNN in the presence of NEt3, is a highly active catalyst for the enantioselective transfer hydrogenation of methylaryl ketones (turnover frequencies (TOFs) of up to 1.4 x 10(6) h(-1) at reflux were obtained) with up to 89% ee. Also the ketone CF3CO(4-C6H4F), containing the strong electron-withdrawing CF3 group, is reduced to the R alcohol with 64% ee and a TOF of 1.5 x 10(4) h(-1). The chiral alkoxide [Ru(OiPr)(CNN)((S,S)-Skewphos)]n iPrOH (9), obtained from 8 and NaOiPr in the presence of 2-propanol, reacts with CF3CO(4-C6H4F) to afford a mixture of the diastereomer alkoxides [Ru(OCH(CF3)(4-C6H4F))(CNN)((S,S)-Skewphos)] (10/11; 74% yield) with 67% de. This value is very close to the enantiomeric excess of the alcohol (R)-CF3CH(OH)(4-C6H4F) formed in catalysis, thus suggesting that diastereoisomeric alkoxides with the Ru-NH2 linkage are key species in the catalytic asymmetric transfer hydrogenation reaction.  相似文献   

9.
Stable salts of the first homoleptic Cu-phosphorus and Cu-ethene complexes, [Cu(eta2-P4)2]+ and [Cu(eta2-C2H4)3]+, isolated by the aid of the weakly coordinating anion (WCA) [Al(OC(CF3)3)4]-, were obtained.  相似文献   

10.
We report herein the synthesis and full characterization of the donor-free Lewis superacids Al(OR(F))(3) with OR(F) = OC(CF(3))(3) (1) and OC(C(5)F(10))C(6)F(5) (2), the stabilization of 1 as adducts with the very weak Lewis bases PhF, 1,2-F(2)C(6)H(4), and SO(2), as well as the internal C-F activation pathway of 1 leading to Al(2)(F)(OR(F))(5) (4) and trimeric [FAl(OR(F))(2)](3) (5, OR(F) = OC(CF(3))(3)). Insights have been gained from NMR studies, single-crystal structure determinations, and DFT calculations. The usefulness of these Lewis acids for halide abstractions has been demonstrated by reactions with trityl chloride (NMR; crystal structures). The trityl salts allow the introduction of new, heteroleptic weakly coordinating [Cl-Al(OR(F))(3)](-) anions, for example, by hydride or alkyl abstraction reactions.  相似文献   

11.
The pentamethylcyclopentadienylsilicon(II) cation, Me5C5Si+, opens up access to novel silicocene derivatives; the penta-iso-propylcyclopentadienylsilicon(II) cation, iPr5C5Si+, is obtained by reaction of the mixed silicocene (iPr5C5)(Me5C5)Si with H(OEt2)2+ Al[OC(CF3)3]4-.  相似文献   

12.
[reaction: see text] The adiabatic electron affinity (EA(ad)) of the CH(3)-C[triple bond]C(*) radical [experiment = 2.718 +/- 0.008 eV] and the gas-phase basicity of the CH(3)-C[triple bond]C:(-) anion [experiment = 373.4 +/- 2 kcal/mol] have been compared with those of their fluorine derivatives. The latter are studied using theoretical methods. It is found that there are large effects on the electron affinities and gas-phase basicities as the H atoms of the alpha-CH(3) group in the propynyl system are substituted by F atoms. The predicted electron affinities are 3.31 eV (FCH(2)-C[triple bond]C(*)), 3.86 eV (F(2)CH-C[triple bond]C(*)), and 4.24 eV (F(3)C-C[triple bond]C(*)), and the predicted gas-phase basicities of the fluorocarbanion derivatives are 366.4 kcal/mol (FCH(2)-C[triple bond]C:(-)), 356.6 kcal/mol (F(2)CH-C[triple bond]C:(-)), and 349.8 kcal/mol (F(3)C-C[triple bond]C:(-)). It is concluded that the electron affinities of fluoropropynyl radicals increase and the gas-phase basicities decrease as F atoms sequentially replace H atoms of the alpha-CH(3) in the propynyl system. The propargyl radicals, lower in energy than the isomeric propynyl radicals, are also examined and their electron affinities are predicted to be 0.98 eV ((*)CH(2)-C[triple bond]CH), 1.18 eV ((*)CFH-C[triple bond]CH), 1.32 eV ((*)CF(2)-C[triple bond] CH), 1.71 eV ((*)CH(2)-C[triple bond]CF), 2.05 eV ((*)CFH-C[triple bond]CF), and 2.23 eV ((*)CF(2)-C[triple bond]CF).  相似文献   

13.
A series of new bismuth fluoroalkoxide compounds have been prepared through the treatment of 1,1,1,3,3,3-hexafluoro-2-propanol with BiAr3 (where Ar=Ph, p-Tol). Reactions were conducted without the use of any additional solvent and the reaction products distilled or extracted with non-polar or polar Lewis base solvents. Structural analyses reveal that under variable reaction conditions the interaction of BiAr3 with (CF3)2CHOH can give a mixture of bismuth complexes with varying degrees of substitution, cluster formation and aggregation. Compounds [Bi(OCH(CF3)2)3(pyr)2] () (pyr=pyridine), [Bi(OCH(CF3)2)3(thf)3] () (thf=tetrahydrofuran), [Bi2(OCH(CF3)2)3(dabco)3] () (dabco=1,4-diazabicyclo[2.2.2]octane), [PhBi(OCH(CF3)2)2]n (), [Bi2O(OCH(CF3)2)4(C7H8)]2 () (C7H8=toluene), [Bi9O7(OCH(CF3)2)13] (), [Bi2O(OCH(CF3)2)4(Et2O)]2 (), [Bi2O(OCH(CF3)2)4(thf)]2 () and [Bi2O(OCH(CF3)2)4(tmeda)2] () (tmeda=N,N,N',N'-tetramethylethylenediamine) have been fully characterised including by single crystal X-ray diffraction.  相似文献   

14.
The sequential treatment of Lewis acids with N,N'-bidentate ligands and thereafter with ButLi has afforded a series of hydride-encapsulating alkali metal polyhedra. While the use of Me3Al in conjunction with Ph(2-C5H4N)NH gives Ph(2-C5H4N)NAlMe2 and this reacts with MeLi in thf to yield the simple 'ate complex Ph(2-C5H4N)NAlMe3Li.thf, the employment of an organolithium substrate capable of beta-hydride elimination redirects the reaction significantly. Whereas the use of ButLi has previously yielded a main group interstitial hydride in which H- exhibits micro6-coordination, it is shown here that variability in the coordination sphere of the encapsulated hydride may be induced by manipulation of the organic ligand. Reaction of (c-C6H11)(2-C5H4N)NH with Me3Al/ButLi yields [{(c-C6H11)(2-C5H4N)N}6HLi8]+[(But2AlMe2)2Li]-, which is best viewed as incorporating only linear di-coordination of the hydride ion. The guanidine 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine (hppH) in conjunction with Me2Zn/ButLi yields the micro8-hydride [(hpp)6HLi8]+[But3Zn]-.0.5PhMe. Formation of the micro8-hydride [(hpp)6HLi8]+[ButBEt3]- is revealed by employment of the system Et3B/ButLi. A new and potentially versatile route to interstitial hydrides of this class is revealed by synthesis of the mixed borohydride-lithium hydride species [(hpp)6HLi8]+[Et3BH]- and [(hpp)6HLi8]+[(Et3B)2H]- through the direct combination of hppLi with Et3BHLi.  相似文献   

15.
The coordination or ion pairing of the hydrogen-bonded anions H(CF3CO2)2- and H(CH3SO3)2- to NEt4+, Li+, Cu+, and/or Cu2+ was investigated. The structure of [Cu2(H(CH3SO3)2)4]n consists of centrosymmetric dimeric moieties that contain two homoconjugated (CH3SO2O-H...OSO2CH3)- anions per Cu2+ ion, forming typical Jahn-Teller tetragonally elongated CuO6 coordination spheres. The oxygen atoms involved in the nearly linear O-H...O hydrogen bonds (O...O approximately 2.62 A) are not coordinated to the Cu2+ ions. The structure of Cu2(CO)2(H(CF3-CO2)2)2 consists of pseudo-C2-symmetric dimers that contain one homoconjugated (CF3COO-H...OCOCF3)- anion per Cu+ ion, forming highly distorted tetrahedral Cu(CO)O3 coordination spheres. Three of the four oxygen atoms in each hydrogen-bonded H(CF3CO2)2- anion are coordinated to the Cu+ ions, including one of the oxygen atoms in each O-H...O hydrogen bond (O...O approximately 2.62 A). Infrared spectra (v(CO) values) of Cu(CO)(CF3CO2) or Cu(CO)(CH3SO3) dissolved in acetonitrile or benzene, with and without added CF3COOH or CH3SO3H, respectively, demonstrate that HA2- anions involving carboxylates or sulfonates are more weakly coordinating than the parent anions RCO2- and RSO3-. Direct current conductivities of THF solutions of Li(CF3CO2) containing varying concentrations of added CF3COOH further demonstrate that Li+ and NEt4+ ion pair much more weakly with H(CF3CO2)2- than with CF3CO2-.  相似文献   

16.
The kinetics and mechanism of oxidation of CF3CHFOCH3 was studied using an 11.5-dm3 environmental reaction chamber. OH radicals were produced by UV photolysis of an O3-H2O-He mixture at an initial pressure of 200 Torr in the chamber. The rate constant of the reaction of CF3CHFOCH3 with OH radicals (k1) was determined to be (1.77 +/- 0.69) x 10(-12) exp[(-720 +/- 110)/T] cm3 molecule(-1)(s-1) by means of a relative rate method at 253-328 K. The mechanism of the reaction was investigated by FT-IR spectroscopy at 298 K. CF3CHFOC(O)H, FC(O)OCH3, and COF2 were determined to be the major products. The branching ratio (k1a/k1b) for the reactions CF3CHFOCH3 + OH --> CF3CHFOCH2* + H2O (k1a) and CF3CHFOCH3 + OH --> CF3CF*OCH3 + H2O (k1b) was estimated to be 4.2:1 at 298 K from the yields of CF3CHFOC(O)H, FC(O)OCH3, and COF2. The rate constants of the reactions of CF3CHFOC(O)H (k2) and FC(O)OCH3 (k3) with OH radicals were determined to be (9.14 +/- 2.78) x 10(-13) exp[(-1190 +/- 90)/T] and (2.10 +/- 0.65) x 10(-13) exp[(-630 +/- 90)/T] cm3 molecule(-1)(s-1), respectively, by means of a relative rate method at 253-328 K. The rate constants at 298 K were as follows: k1 = (1.56 +/- 0.06) x 10-13, k2 = (1.67 +/- 0.05) x 10-14, and k3 = (2.53 +/- 0.07) x 10-14 cm3 molecule(-1)(s-1). The tropospheric lifetimes of CF3CHFOCH3, CF3CHFOC(O)H, and FC(O)OCH3 with respect to reaction with OH radicals were estimated to be 0.29, 3.2, and 1.8 years, respectively.  相似文献   

17.
The novel bimetallic micro-diboranyl-oxycarbyne bridged platinum-tungsten complex [W{eta(1),micro-CO-B(NMe(2))-B(NMe(2))-(eta(5)-C(5)H(4))}(CO)(2){Pt(PPh(3))(2)}] (W-Pt) () has been synthesised by a two-step reaction, starting from the dilithiated half-sandwich compound Li[W(eta(5)-C(5)H(4)Li)(CO)(3)] () via the ansa-diboranyl-oxycarbyne tungsten complex [W{eta(1)-CO-B(NMe(2))B(NMe(2))(eta(5)-C(5)H(4))}(OC)(2)] () by use of stoichiometric amounts of B(2)(NMe(2))(2)Br(2) and [Pt(eta(2)-C(2)H(4))(PPh(3))(2)], respectively.  相似文献   

18.
A series of sterically varied aryl alcohols H-OAr [OAr = OC6H5 (OPh), OC6H4(2-Me) (oMP), OC6H3(2,6-(Me))2 (DMP), OC6H4(2-Pr(i)) (oPP), OC6H3(2,6-(Pr(i)))2 (DIP), OC6H4(2-Bu(t)) (oBP), OC6H3(2,6-(Bu(t)))2 (DBP); Me = CH3, Pr(i) = CHMe2, and Bu(t) = CMe3] were reacted with LiN(SiMe3)2 in a Lewis basic solvent [tetrahydrofuran (THF) or pyridine (py)] to generate the appropriate "Li(OAr)(solv)x". In the presence of THF, the OPh derivative was previously identified as the hexagonal prismatic complex [Li(OPh)(THF)]6; however, the structure isolated from the above route proved to be the tetranuclear species [Li(OPh)(THF)]4 (1). The other "Li(OAr)(THF)x" products isolated were characterized by single-crystal X-ray diffraction as [Li(OAr)(THF)]4 [OAr = oMP (2), DMP (3), oPP (4)], [Li(DIP)(THF)]3 (5), [Li(oBP)(THF)2]2, (6), and [Li(DBP)(THF)]2, (7). The tetranuclear species (1-4) consist of symmetric cubes of alternating tetrahedral Li and pyramidal O atoms, with terminal THF solvent molecules bound to each metal center. The trinuclear species 5 consists of a six-membered ring of alternating trigonal planar Li and bridging O atoms, with one THF solvent molecule bound to each metal center. Compound 6 possesses two Li atoms that adopt tetrahedral geometries involving two bridging oBP and two terminal THF ligands. The structure of 7 was identical to the previously reported [Li(DBP)(THF)]2 species, but different unit cell parameters were observed. Compound 7 varies from 6 in that only one solvent molecule is bound to each Li metal center of 7 because of the steric bulk of the DBP ligand. In contrast to the structurally diverse THF adducts, when py was used as the solvent, the appropriate "Li(OAr)(py)x" complexes were isolated as [Li(OAr)(py)2]2 (OAr = OPh (8), oMP (9), DMP (10), oPP (11), DIP (12), oBP (13)) and [Li(DBP)(py)]2 (14). Compounds 8-13 adopt a dinuclear, edge-shared tetrahedral complex. For 14, because of the steric crowding of the DBP ligand, only one py is coordinated, yielding a dinuclear fused trigonal planar arrangement. Two additional structure types were also characterized for the DIP ligand: [Li(DIP)(H-DIP)(py)]2 (12b) and [Li2(DIP)2(py)3] (12c). Multinuclear (6,7Li and 13C) solid-state MAS NMR spectroscopic studies indicate that the bulk powder possesses several Li environments for "transitional ligands" of the THF complexes; however, the py adducts possess only one Li environment, which is consistent with the solid-state structures. Solution NMR studies indicate that "transitional" compounds of the THF precursors display multiple species in solution whereas the py adducts display only one lithium environment.  相似文献   

19.
The acetylido methyl iron(II) complexes, cis/trans-[Fe(dmpe)(2)(C[triple bond]CR)(CH(3))] (1) and trans-[Fe(depe)(2)(C[triple bond]CR)(CH(3))] (2) (dmpe = 1,2-dimethylphoshinoethane; depe = 1,2-diethylphosphinoethane), were synthesized by transmetalation from the corresponding alkyl halide complexes. Acetylido methyl iron(II) complexes were also formed by transmetalation from the chloride complexes, trans-[Fe(dmpe)(2)(C[triple bond]CR)(Cl)] or trans-[Fe(depe)(2)(C[triple bond]CR)(Cl)]. The structure of trans-[Fe(dmpe)(2)(C[triple bond]CC(6)H(5))(CH(3))] (1a) was determined by single-crystal X-ray diffraction. The methyl acetylido iron complexes, [Fe(dmpe)(2)(C[triple bond]CR)(CH(3))] (1), are thermally stable in the presence of acetylenes; however, under UV irradiation, methane is lost with the formation of a metal bisacetylide. Photochemical metathesis of cis- or trans-[Fe(dmpe)(2)(CH(3))(C[triple bond]CR)] (R = C(6)H(5) (1a), 4-C(6)H(4)OCH(3) (1b)) with terminal acetylenes was used to selectively synthesize unsymmetrically substituted iron(II) bisacetylide complexes of the type trans-[Fe(dmpe)(2)(C[triple bond]CR)(C[triple bond]CR')] [R = Ph, R' = Ph (6a), 4-CH(3)OC(6)H(4) (6b), (t)()Bu (6c), Si(CH(3))(3) (6d), (CH(2))(4)C[triple bond]CH (6e); R = 4-CH(3)OC(6)H(4), R' = 4-CH(3)OC(6)H(4), (6g), (t)()Bu (6h), (CH(2))(4)C[triple bond]CH (6i), adamantyl (6j)]. The structure of the unsymmetrical iron(II) bisacetylide complex trans-[Fe(dmpe)(2)(C[triple bond]CC(6)H(5))(C[triple bond]CC(6)H(4)OCH(3))] (6b) was determined by single-crystal X-ray diffraction. The photochemical metathesis of the bis-acetylene, 1,7-octadiyne, with trans-[Fe(dmpe)(2)(CH(3))(C[triple bond]CPh)] (1a), was utilized to synthesize the bridged binuclear species trans,trans-[(C(6)H(5)C[triple bond]C)Fe(dmpe)(2)(mu-C[triple bond]C(CH(2))(4)C[triple bond]C)Fe(dmpe)(2)(C[triple bond]CC(6)H(5))] (11). The trinuclear species trans,trans,trans-[(C(6)H(5)C[triple bond]C)Fe(dmpe)(2)(mu-C[triple bond]C(CH(2))(4)C[triple bond]C)Fe(dmpe)(2)(mu-C[triple bond]C(CH(2))(4)C[triple bond]C)Fe(dmpe)(2)(C[triple bond]CC(6)H(5))] (12) was synthesized by the photochemical reaction of Fe(dmpe)(2)(C[triple bond]CPh)(C[triple bond]C(CH(2))(4)C[triple bond]CH) (6e) with Fe(dmpe)(2)(CH(3))(2). Extended irradiation of the bisacetylide complexes with phenylacetylene resulted in insertion of the terminal alkyne into one of the metal acetylide bonds to give acetylide butenyne complexes. The structure of the acetylide butenyne complex, trans-[Fe(dmpe)(2)(C[triple bond]CC(6)H(4)OCH(3))(eta(1)-C(C(6)H(5))=CH(C[triple bond]CC(6)H(4)OCH(3)))] (9a) was determined by single-crystal X-ray diffraction.  相似文献   

20.
Upon reacting P(4)S(3) with AgAl(hfip)(4) and AgAl(pftb)(4) [hfip = OC(H)(CF(3))(2); pftb = OC(CF(3))(3)], the compounds Ag(P(4)S(3))Al(hfip)(4) 1 and Ag(P(4)S(3))(2)(+)[Al(pftb)(4)](-) 2 formed in CS(2) (1) or CS(2)/CH(2)Cl(2) (2) solution. Compounds 1 and 2 were characterized by single-crystal X-ray structure determinations, Raman and solution NMR spectroscopy, and elemental analyses. One-dimensional chains of [Ag(P(4)S(3))(x)](infinity) (x = 1, 1; x = 2, 2) formed in the solid state with P(4)S(3) ligands that bridge through a 1,3-P,S, a 2,4-P,S, or a 3,4-P,P eta(1) coordination to the silver ions. Compound 2 with the least basic anion contains the first homoleptic metal(P(4)S(3)) complex. Compounds 1 and 2 also include the long sought sulfur coordination of P(4)S(3). Raman spectra of 1 and 2 were assigned on the basis of DFT calculations of related species. The influence of the silver coordination on the geometry of the P(4)S(3) cage is discussed, additionally aided by DFT calculations. Consequences for the frequently observed degradation of the cage are suggested. An experimental silver ion affinity scale based on the solid-state structures of several weak Lewis acid base adducts of type (L)AgAl(hfip)(4) is given. The affinity of the ligand L to the silver ion increases according to P(4) < CH(2)Cl(2) < P(4)S(3) < S(8) < 1,2-C(2)H(4)Cl(2) < toluene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号