首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a class of knapsack problems that include setup costs for families of items. An individual item can be loaded into the knapsack only if a setup cost is incurred for the family to which it belongs. A mixed integer programming formulation for the problem is provided along with exact and heuristic solution methods. The exact algorithm uses cross decomposition. The proposed heuristic gives fast and tight bounds. In addition, a Benders decomposition algorithm is presented to solve the continuous relaxation of the problem. This method for solving the continuous relaxation can be used to improve the performance of a branch and bound algorithm for solving the integer problem. Computational performance of the algorithms are reported and compared to CPLEX.  相似文献   

2.
The optimal pump control problem in a water supply system can be formulated as a mixed integer programming problem. In general, this problem is very difficult to solve by conventional integer programming algorithms, because the number of decision variables is as large as the total number of combinations of pump stations and control periods. However, it possesses a certain block triangular structure, which offers an attractive computational scheme. Taking advantage of this structure, this paper proposes a heuristic decomposition algorithm for finding a good feasible solution to this type of mixed integer programming problems. Numerical results for an actual pump control problem are also reported.  相似文献   

3.
The problem of makespan minimization for parallel machines scheduling with multiple planned nonavailability periods in the case of resumable jobs is considered. In the current state of the literature, there is a limited number of models and algorithms dealing with this problem and only for very small problem size, and nonavailability limited to some machines. The problem is first formulated as a mixed integer linear programming model and optimally solved using CPLEX for small to moderately large size problems with multiple availability constraints on all machines. An implicit enumeration algorithm using the lexicographic order is then designed to solve large-scale problems. Numerical results are obtained for several experiments and they show the validity and performance improvements procured by both the MILP model and the new enumeration algorithm.  相似文献   

4.
Finding all solutions of nonlinear or piecewise-linear equations is an important problem which is widely encountered in science and engineering. Various algorithms have been proposed for this problem. However, the implementation of these algorithms are generally difficult for non-experts or beginners. In this paper, an efficient method is proposed for finding all solutions of separable systems of piecewise-linear equations using integer programming. In this method, we formulate the problem of finding all solutions by a mixed integer programming problem, and solve it by a high-performance integer programming software such as GLPK, SCIP, or CPLEX. It is shown that the proposed method can be easily implemented without making complicated programs. It is also confirmed by numerical examples that the proposed method can find all solutions of medium-scale systems of piecewise-linear equations in practical computation time.  相似文献   

5.
0–1 problems are often difficult to solve. Although special purpose algorithms (exact as well as heuristic) exist for solving particular problem classes or problem instances, there are few general purpose algorithms for solving practical-sized instances of 0–1 problems. This paper deals with a general purpose heuristic algorithm for 0–1 problems. In this paper, we compare two methods based on simulated annealing for solving general 0–1 integer programming problems. The two methods differe in the scheme used for neighbourhood transitions in the simulated annealing framework. We compare the performance of the two methods on the set partitioning problem.  相似文献   

6.
We study a generalization of the vertex packing problem having both binary and bounded continuous variables, called the mixed vertex packing problem (MVPP). The well-known vertex packing model arises as a subproblem or relaxation of many 0-1 integer problems, whereas the mixed vertex packing model arises as a natural counterpart of vertex packing in the context of mixed 0-1 integer programming. We describe strong valid inequalities for the convex hull of solutions to the MVPP and separation algorithms for these inequalities. We give a summary of computational results with a branch-and-cut algorithm for solving the MVPP and using it to solve general mixed-integer problems. Received: June 1998 / Accepted: February 2000?Published online September 20, 2000  相似文献   

7.
Stochastic programs with continuous variables are often solved using a cutting plane method similar to Benders' partitioning algorithm. However, mixed 0–1 integer programs are also solved using a similar procedure along with enumeration. This similarity is exploited in this paper to solve two stage linear programs under uncertainty where the first stage variables are 0–1. Such problems often arise in capital investment. A network investment application is given which includes as a special case a coal transportation problem.  相似文献   

8.
In this paper a mixed integer set resulting from the intersection of a single constrained mixed 0–1 set with the vertex packing set is investigated. This set arises as a subproblem of more general mixed integer problems such as inventory routing and facility location problems. Families of strong valid inequalities that take into account the structure of the simple mixed integer set and that of the vertex packing set simultaneously are introduced. In particular, the well-known mixed integer rounding inequality is generalized to the case where incompatibilities between binary variables are present. Exact and heuristic algorithms are designed to solve the separation problems associated to the proposed valid inequalities. Preliminary computational experiments show that these inequalities can be useful to reduce the integrality gaps and to solve integer programming problems.  相似文献   

9.
The problem of annual production scheduling in surface mining consists of determining an optimal sequence of extracting the mineralized material from the ground. The main objective of the optimization process is usually to maximize the total Net Present Value of the operation. Production scheduling is typically a mixed integer programming (MIP) type problem. However, the large number of integer variables required in formulating the problem makes it impossible to solve. To overcome this obstacle, a new algorithm termed “Fundamental Tree Algorithm” is developed based on linear programming to aggregate blocks of material and decrease the number of integer variables and the number of constraints required within the MIP formulation. This paper proposes the new Fundamental Tree Algorithm in optimizing production scheduling in surface mining. A case study on a large copper deposit summarized in the paper shows substantial economic benefit of the proposed algorithm compared to existing methods.  相似文献   

10.
We consider the problem of assigning patients to nurses for home care services. The aim is to balance the workload of the nurses while avoiding long travels to visit the patients. We analyse the case of the CSSS Côte-des-Neiges, Métro and Parc Extension for which a previous analysis has shown that demand fluctuations may create work overload for the nursing staff. We propose a mixed integer programming model with some non-linear constraints and a non-linear objective which we solve using a Tabu Search algorithm. A simplification of the workload measure leads to a linear mixed integer program which we optimize using CPLEX.  相似文献   

11.
In this paper, we propose a reference direction approach and an interactive algorithm to solve the general multiple objective integer linear programming problem. At each iteration, only one mixed integer linear programming problem is solved to find an (weak) efficient solution. Each intermediate solution is integer. The decision maker has to provide only the reference point at each iteration. No special software is required to implement the proposed algorithm. The algorithm is illustrated with an example.  相似文献   

12.
This paper proposes an accelerated solution method to solve two-stage stochastic programming problems with binary variables in the first stage and continuous variables in the second stage. To develop the solution method, an accelerated sample average approximation approach is combined with an accelerated Benders’ decomposition algorithm. The accelerated sample average approximation approach improves the main structure of the original technique through the reduction in the number of mixed integer programming problems that need to be solved. Furthermore, the recently accelerated Benders’ decomposition approach is utilized to expedite the solution time of the mixed integer programming problems. In order to examine the performance of the proposed solution method, the computational experiments are performed on developed stochastic supply chain network design problems. The computational results show that the accelerated solution method solves these problems efficiently. The synergy of the two accelerated approaches improves the computational procedure by an average factor of over 42%, and over 12% in comparison with the original and the recently modified methods, respectively. Moreover, the betterment of the computational process increases substantially with the size of the problem.  相似文献   

13.
This paper studies a two-machine open shop scheduling problem with an availability constraint, ie we assume that a machine is not always available and that the processing of the interrupted job can be resumed when the machine becomes available again. We consider the makespan minimization as criterion. This problem is NP-hard. We develop a pseudo-polynomial time dynamic programming algorithm to solve the problem optimally when the machine is not available at time s>0. Then, we propose a mixed integer linear programming formulation, that allows to solve instances with up to 500 jobs optimally in less than 5?min with CPLEX solver. Finally, we show that any heuristic algorithm has a worst-case error bound of 1.  相似文献   

14.
Several hybrid methods have recently been proposed for solving 0–1 mixed integer programming problems. Some of these methods are based on the complete exploration of small neighborhoods. In this paper, we present several convergent algorithms that solve a series of small sub-problems generated by exploiting information obtained from a series of relaxations. These algorithms generate a sequence of upper bounds and a sequence of lower bounds around the optimal value. First, the principle of a linear programming-based algorithm is summarized, and several enhancements of this algorithm are presented. Next, new hybrid heuristics that use linear programming and/or mixed integer programming relaxations are proposed. The mixed integer programming (MIP) relaxation diversifies the search process and introduces new constraints in the problem. This MIP relaxation also helps to reduce the gap between the final upper bound and lower bound. Our algorithms improved 14 best-known solutions from a set of 108 available and correlated instances of the 0–1 multidimensional Knapsack problem. Other encouraging results obtained for 0–1 MIP problems are also presented.  相似文献   

15.
We consider the three-stage two-dimensional bin packing problem (2BP) which occurs in real-world applications such as glass, paper, or steel cutting. We present new integer linear programming formulations: models for a restricted version and the original version of the problem are developed. Both only involve polynomial numbers of variables and constraints and effectively avoid symmetries. Those models are solved using CPLEX. Furthermore, a branch-and-price (B&P) algorithm is presented for a set covering formulation of the unrestricted problem, which corresponds to a Dantzig-Wolfe decomposition of the polynomially-sized model. We consider column generation stabilization in the B&P algorithm using dual-optimal inequalities. Fast column generation is performed by applying a hierarchy of four methods: (a) a fast greedy heuristic, (b) an evolutionary algorithm, (c) solving a restricted form of the pricing problem using CPLEX, and finally (d) solving the complete pricing problem using CPLEX. Computational experiments on standard benchmark instances document the benefits of the new approaches: The restricted version of the integer linear programming model can be used to quickly obtain near-optimal solutions. The unrestricted version is computationally more expensive. Column generation provides a strong lower bound for 3-stage 2BP. The combination of all four pricing algorithms and column generation stabilization in the proposed B&P framework yields the best results in terms of the average objective value, the average run-time, and the number of instances solved to proven optimality.  相似文献   

16.
There exist general purpose algorithms to solve the integer linear programming problem but none of them are polynomial. Polynomially bounded rounding algorithms have been studied, but most of them are problem specific. In this paper we study a generalized rounding algorithm that is polynomial, characterize matrices that may be used in this scheme and identify a class of integer programs that it solves.  相似文献   

17.
The solution of a large-scale linear, integer, or mixed integer programming problem is often facilitated by the exploitation of special structure in the model. This paper presents heuristic algorithms for identifying embedded network rows within the coefficient matrix of such models. The problem of identifying a maximum-size embedded pure network is shown to be among the class of NP-hard problems. The polynomially-bounded, efficient algorithms presented here do not guarantee network sets of maximum size. However, upper bounds on the size of the maximum network set are developed and used to show that our algorithms identify embedded networks of close to maximum size. Computational tests with large-scale, real-world models are presented.  相似文献   

18.
This paper is concerned with classical concave cost multi-echelon production/inventory control problems studied by W. Zangwill and others. It is well known that the problem with m production steps and n time periods can be solved by a dynamic programming algorithm in O(n 4 m) steps, which is considered as the fastest algorithm for solving this class of problems. In this paper, we will show that an alternative 0–1 integer programming approach can solve the same problem much faster particularly when n is large and the number of 0–1 integer variables is relatively few. This class of problems include, among others problem with set-up cost function and piecewise linear cost function with fewer linear pieces. The new approach can solve problems with mixed concave/convex cost functions, which cannot be solved by dynamic programming algorithms.  相似文献   

19.
Parametric global optimisation for bilevel programming   总被引:2,自引:2,他引:0  
We propose a global optimisation approach for the solution of various classes of bilevel programming problems (BLPP) based on recently developed parametric programming algorithms. We first describe how we can recast and solve the inner (follower’s) problem of the bilevel formulation as a multi-parametric programming problem, with parameters being the (unknown) variables of the outer (leader’s) problem. By inserting the obtained rational reaction sets in the upper level problem the overall problem is transformed into a set of independent quadratic, linear or mixed integer linear programming problems, which can be solved to global optimality. In particular, we solve bilevel quadratic and bilevel mixed integer linear problems, with or without right-hand-side uncertainty. A number of examples are presented to illustrate the steps and details of the proposed global optimisation strategy.  相似文献   

20.
为解决带时间窗和多配送人员的车辆路径问题,本文采用混合启发式算法对其进行求解。该算法主要由整数规划重组、局部搜索算法和模拟退火算法三部分组成。在算法中,整数规划重组有效提高了解的质量,局部搜索算法和模拟退火算法保证了算法搜索的深入性和广泛性。通过与CPLEX和禁忌搜索算法进行对比,证实了混合启发式算法实用价值更高,求解效果更好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号