首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unconventional integer quantum Hall effect in graphene   总被引:1,自引:0,他引:1  
Monolayer graphite films, or graphene, have quasiparticle excitations that can be described by (2+1)-dimensional Dirac theory. We demonstrate that this produces an unconventional form of the quantized Hall conductivity sigma(xy) = -(2e2/h)(2n+1) with n = 0, 1, ..., which notably distinguishes graphene from other materials where the integer quantum Hall effect was observed. This unconventional quantization is caused by the quantum anomaly of the n=0 Landau level and was discovered in recent experiments on ultrathin graphite films.  相似文献   

2.
In this work, we present a model and a method to study integer quantum Hall (IQH) systems. Making use of the Landau levels structure we divide these two-dimensional systems into a set of interacting one-dimensional gases, one for each guiding center. We show that the so-called strong field approximation, used by Kallin and Halperin and by MacDonald, is equivalent, in first order, to a forward scattering approximation and analyze the IQH systems within this approximation. Using an appropriate variation of the Landau level bosonization method we obtain the dispersion relations for the collective excitations and the single-particle spectral functions. For the bulk states, these results evidence a behavior typical of non-normal strongly correlated systems, including the spin-charge splitting of the single-particle spectral function. We discuss the origin of this behavior in the light of the Tomonaga-Luttinger model and the bosonization of two-dimensional electron gases.  相似文献   

3.
4.
5.
6.
A Hall resistivity formula for the 2DES in graphene is derived from the zero-mass Dirac field model adopting the electron reservoir hypothesis. The formula reproduces perfectly the experimental resistivity data [K.S. Novoselov, et al., Nature 438 (2005) 201]. This perfect agreement cannot be achieved by any other existing models. The electron reservoir is shown to be the 2DES itself.  相似文献   

7.
8.
9.
We study dynamics of electrons in a magnetic field using a network model with two channels per link with random mixing, while the intrachannel potential is periodic (non-random); the channels represent two spin states. We consider channel mixing as function of the energy separation of the two extended states, and show that the phase diagram is different from the standard quantum Hall diagram for random intrachannel potential.  相似文献   

10.
A system of independent electrons in a random potential on the surface of a finite cylinder is considered in the presence of a perpendicular magnetic field. It is shown that the spectral stability condition which essentially asserts that the range of variation of the electrostatic energy in an external electric field is independent of disorder, and which is sufficient to prove the integer quantization of the Hall conductivity is also sufficient to prove the exact compensation of current loss brought about by bound states by current gain in extended states for completely filled Landau bands. Furthermore, the spectral stability condition is shown to be both sufficient and necessary to prove Levinson's theorem which was used by some authors to demonstrate compensation.  相似文献   

11.
12.
13.
The compressibility of a two-dimensional electron system with spin in a spatially correlated random potential and a quantizing magnetic field is investigated. Electron-electron interaction is treated with the Hartree-Fock method. Numerical results for the influences of interaction and disorder on the compressibility as a function of the particle density and the strength of the magnetic field are presented. Localization-delocalization transitions associated with a highly compressible region in the energy spectrum are found at half-integer filling factors. Coulomb blockade effects are found near integer fillings in the regions of low compressibility. Results are compared with recent experiments.  相似文献   

14.
15.
16.
17.
18.
19.
《Nuclear Physics B》1995,438(3):522-550
We study the tunneling between two quantum Hall systems, along a quasi one-dimensional interface. A detailed analysis relates microscopic parameters, characterizing the potential barrier, with the effective field-theory model for the tunneling. It is shown that the phenomenon of fermion number fractionalization is expected to occur, either localized in conveniently modulated barriers or in the form of free excitations, once lattice effects are taken into account. This opens the experimental possibility of an observation of fractional charges with internal structure, close to the magnetic length scale. The coupling of the system to external gauge fields is performed, leading us to the exact quantization of the Hall conductivity at the interface. The field-theory approach is well supported by a numerical diagonalization of the microscopic hamiltonian.  相似文献   

20.
A Landauer–Büttiker-type formulation of backscattering between pairs of opposite directed channels is used to describe the coupling at the nodes of a network. Physically, these nodes correspond to saddle points of a slowly varying lateral potential modulation in a 2D electron system in the high magnetic field regime. We show that the network can be solved without needing a transfer matrix as used by Chalker and Coddington. We use an exponential dependence of the coupling on the filling factor of the associated Landau level. We demonstrate that our network representation allows a quantitative modeling of almost every realistic sample geometry in the quantum Hall regime, including the effect of gate electrodes across a Hall bar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号