首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have determined the charge renormalization function β(g) for the supersymmetric nonabelian gauge model of Gliozzi, Scherk and Olive. We find that its one-and two-loop coefficients are zero. The model is thus anomaly-free at the level of our calculation.  相似文献   

2.
Renormalization of two-loop divergent corrections to the vacuum expectation values (v1,v2) of the two Higgs doublets in the minimal supersymmetric standard model, and their ratio tanβ=v2/v1, is discussed for general Rξ gauge fixings. When the renormalized (v1,v2) are defined to give the minimum of the loop-corrected effective potential, it is shown that, beyond the one-loop level, the dimensionful parameters in the Rξ gauge fixing term generate gauge dependence of the renormalized tanβ. Additional shifts of the Higgs fields are necessary to realize the gauge-independent renormalization of tanβ.  相似文献   

3.
4.
5.
P N Pandita 《Pramana》1993,41(Z1):303-315
The effect of radiative corrections on the Higgs masses and couplings in supersymmetric models is summarized. Radiative corrections in both the minimal and nonminimal models are discussed. It is pointed out that large singlet Higgs vacuum expectation values are screened out from the radiative corrections to the lightest Higgs mass in nonminimal models. In supersymmetric models the crucial mass limit for the Higgs search may be around 150 GeV.  相似文献   

6.
Three-dimensional supersymmetric Higgs models with an additional U(N) flavor symmetry are considered within the 1/N expansion. Explicit expressions for the renormalization group functions are obtained in the large N limit which exhibit logarithmic dependence on the gauge coupling constants.  相似文献   

7.
P N Pandita 《Pramana》1993,41(1):303-315
The effect of radiative corrections on the Higgs masses and couplings in supersymmetric models is summarized. Radiative corrections in both the minimal and nonminimal models are discussed. It is pointed out that large singlet Higgs vacuum expectation values are screened out from the radiative corrections to the lightest Higgs mass in nonminimal models. In supersymmetric models the crucial mass limit for the Higgs search may be around 150 GeV.  相似文献   

8.
Renormalization of composite three-quark operators in dimensional regularization is complicated by the mixing of physical and unphysical (evanescent) operators. This mixing must be taken into account in a consistent subtraction scheme. In this work we propose a particular scheme that allows one to avoid the necessity of additional finite renormalization and is convenient in QCD applications. As an illustration, we calculate the two-loop anomalous dimensions of local three-quark operators in this scheme.  相似文献   

9.
We present some general classes of supersymmetric models in which the 't Hooft anomaly-matching conditions are precisely satisfied by quasi-Goldstone fermions (QGFs) and hence mass of all the light composite fermions is double-protected by supersymmetry and chiral symmetry. To find this kind of models in an economic way we show that the low-energy spectrum consistent with chiral symmetry is exhausted by QGFs whenever there exists a complementary Higgs picture of the QGF model.  相似文献   

10.
Two-loop renormalization group equations in the standard model are recalculated. A new coefficient is found in the beta function of the quartic coupling and a class of gauge invariants is found to be absent in the beta functions of hadronic Yukawa couplings. The two-loop beta function of the Higgs mass parameter is presented in complete form.  相似文献   

11.
Theoretical constraints and limits on the masses of Higgs scalars in the standard electroweak model, in electroweak models with additional Higgs doublets and in various supersymmetric models are presented. In the standard model, the lower limit on the Higgs mass, based on vacuum stability arguments, is reviewed in detail, as are “upper limits” based on perturbative constraints. In most grand unified and all supersymmetric models, however, at least two doublets are needed. The masses of the various Higgs scalars in the two-doublet model are discussed and constraints on their masses are found, including the generalization of the above limits. The results are then generalized to models with more than two doublets. Finally, recent attempts at constructing models with low-energy supersymmetry are reviewed and it is shown that in many models, fairly stringent tree-level mass relations among the Higgs scalars can be found. These relations are interesting in that they do not refer to the supersymmetric partners of ordinary particles, and they are most restrictive in models in which the supersymmetry is explicitly broken, i.e., via arbitrary mass terms.  相似文献   

12.
13.
14.
The renormalization group function β(g) is found to vanish in the two-loop approximation for a recently derived SU(4) supersymmetric Yang-Mills theory.  相似文献   

15.
Despite great efforts and partial successes the situation with respect to spontaneously broken supersymmetric unified gauge models of weak, electromagnetic and strong interactions has remained quite unsatisfactory up to now. Starting from the most simple SU(2) × U(1) cases we exploit possible extensions. This naturally leads to a consideration of vector-like models with—in the first instance—a larger number of multiplets. Although the later can be made massive without spoiling the conservation of fermion number, the additional massive fermions only show parity conserving interactions with all the intermediate vector fields. Therefore models with larger gauge groups are considered: SU(2) × SU(2) × U(1) with two quartets, SU(3) × U(1) with four triplets, and finally SU(3) × SU(2) × U(1) with two sextets of matter fields. None of these can be accepted yet as a true model for physical particles, but it is shown how different negative features in the simple theories may be avoided in the more complicated ones. Thus our results may be considered as an encouraging starting point for investigations of larger gauge groups in supersymmetric models.  相似文献   

16.
We investigate squark and gluino pair production at LHC (CMS) with subsequent decays into quarks, leptons, and the lightest supersymmetric particles (LSP) in models with effective supersymmetry, where the third generation of squarks is relatively light, whilst the first two generations of squarks are heavy. We consider the general case of nonuniversal gaugino masses. The visibility of a signal through an excess over Standard Model background in (n≥2) jets+(m≥0) leptons+E T miss events depends rather strongly on the relation between the LSP, second-neutralino, gluino, and squark masses and decreases with increasing LSP mass. We find that, for a relatively heavy gluino, it is very difficult to detect a SUSY signal even for light third-generation squarks $(m_{\tilde q_3 } \leqslant 1TeV)$ if the LSP mass is close to the third-generation squark mass.  相似文献   

17.
The two-loop β-functions for the scalar quartic couplings are computed in a general renormalizable quantum field theory with scalar, spin-12, and (vector) gauge fields associated with a general gauge group G, using dimensional regularization and modified minimal subtraction (?MS). A more explicit form is given for the two-loop β-function of the quartic coupling of the Higgs doublet in the minimal QCD electroweak theory based on SU(3) × SU(2) × U(1).  相似文献   

18.
We investigate how in supersymmetric gauge theories non-perturbative effects are able to generate non-trivial vacuum properties otherwise forbidden by perturbative non-renormalization theorems. This conclusion can be reliably drawn since the constancy of certain Green functions — due to supersymmetry (SUSY) — allows one to connect vacuum-dominated large distances with short-distance behaviour which is reliably computed by instanton methods. In all the cases we discuss (without matter, with massive or massless matter in real representations and, finally, with matter in complex representations) instanton calculations imply the occurrence of a variety of condensates. For the pure SUSY gauge theory, a gluino condensate induces the spontaneous breaking of Z2N. For massive super-quantum chromodynamics (SQCD) we find a peculiar mass dependence of matter condensates whose origin is traced to mass singularities of non-zero mode instanton contributions. These contributions force the massless limit of SQCD to differ from the strictly massless case, in which the spontaneous breaking of chiral symmetries is induced. Inconsistency with an anomaly equation forces either infinite matter condensates or spontaneous SUSY breaking in the massless cases. For non-constant Green functions, instantons are shown to provide new calculable short-distance singularities of an obvious non-perturbative nature.  相似文献   

19.
《Physics Reports》1988,162(4):169-248
We review our present understanding of those non-perturbative features of supersymmetric gauge theories that are believed to determine the properties of their ground states (vacua). A wide variety of theories is discussed in detail: pure Yang-Mills, theories with massive or massless real matter fields, theories with chiral matter, both for SU(N) and for the case of a general compact gauge group (as for instance E8). Depending on some general features of the theory under consideration, various (perhaps) unexpected phenomena are shown to occur. Among these the breakdown of the (perturbatively established) non-renormalization theorem, the occurrence of runaway vacua in certain limits, the spontaneous dynamical breaking of supersymmetry itself in some chiral theories. Throughout the report we restrict ourselves to the confining picture instanton method, occasionally complementing it with the information coming from chiral and supersymmetric Ward-Takahashi identities. We compare our results with the ones suggested earlier by effective Lagrangian methods and, only briefly, with those obtained by other groups in the Higgs picture.  相似文献   

20.
The vacuum alignment problem is analyzed in the context of supersymmetric gauge theories with dynamical symmetry breaking. Three cases are distinguished, depending on whether the vacuum expectation value of the weak gauge current superfield in vacuum characterized by the orientation Ω is zero for all Ω, for some Ω, or for no Ω. In the first case, a non-renormalization theorem is proved to all orders in the weak coupling, showing that the usual criterion of minimizing the vacuum energy density is insufficient to determine the alignment, and possible resolutions of the problem are discussed. The second case is similar, except that the possible alignments are resricted to the range of Ω giving a vanishing VEV and the weak gauge group may then be broken non-minimally. In the third case, supersymmetry is itself broken at the tree level by the weak interactions. The supersymmetric generalization of the Schwinger mechanism for dynamical mass generation is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号