首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We use numerical simulations to investigate the spin Hall effect in quantum wires in the presence of both Rashba and Dresselhaus spin-orbit coupling. We find that the intrinsic spin Hall effect is highly anisotropic with respect to the orientation of the wire, and that the nature of this anisotropy depends strongly on the electron density and the relative strengths of the Rashba and Dresselhaus spin-orbit couplings. In particular, at low densities, when only one subband of the quantum wire is occupied, the spin Hall effect is strongest for electron momentum along the [N110] axis, which is the opposite of what is expected for the purely 2D case. In addition, when more than one subband is occupied, the strength and anisotropy of the spin Hall effect can vary greatly over relatively small changes in electron density, which makes it difficult to predict which wire orientation will maximize the strength of the spin Hall effect. These results help to illuminate the role of quantum confinement in spin-orbit-coupled systems, and can serve as a guide for future experimental work on the use of quantum wires for spin-Hall-based spintronic applications.  相似文献   

2.
3.
We describe a new effect in semiconductor spintronics that leads to dissipationless spin currents in paramagnetic spin-orbit coupled systems. We argue that in a high-mobility two-dimensional electron system with substantial Rashba spin-orbit coupling, a spin current that flows perpendicular to the charge current is intrinsic. In the usual case where both spin-orbit split bands are occupied, the intrinsic spin-Hall conductivity has a universal value for zero quasiparticle spectral broadening.  相似文献   

4.
Yezhu Lv 《中国物理 B》2022,31(12):127303-127303
Quantum anomalous Hall effect (QAHE) is an innovative topological spintronic phenomenon with dissipationless chiral edge states and attracts rapidly increasing attention. However, it has only been observed in few materials in experiments. Here, according to the first-principles calculations, we report that the MXene MoYN$_{2}$CSCl shows a topologically nontrivial band gap of 37.3~meV, possessing QAHE with a Chern number of $C = 1$, which is induced by band inversion between $ {\rm d}_{xz}$ and ${\rm d}_{yz}$ orbitals. Also, the topological phase transition for the MoYN$_{2}$CSCl can be realized via strain or by turning the magnetization direction. Remarkably, MoYN$_{2}$CSCl shows the nodal-line semimetal state dependent on the electron correlation $U$. Our findings add an experimentally accessible and tunable member to the QAHE family, which stands a chance of enriching the applications in spintronics.  相似文献   

5.
We consider a particle in a 2 dimensional plane in a periodic potential and a homogeneous magnetic field perpendicular to the plane. Kubo's expression for conductivity of the Hall current is an integer.

This result of Thouless, Kohomoto, Nightingale and den Nijs is interpreted geometrically.  相似文献   


6.
7.
8.
We report observation of intrinsic inverse spin Hall effect in undoped GaAs multiple quantum wells with a sample temperature of 10 K. A transient ballistic pure spin current is injected by a pair of laser pulses through quantum interference. By time resolving the dynamics of the pure spin current, the momentum relaxation time is deduced, which sets the lower limit of the scattering time between electrons and holes. The transverse charge current generated by the pure spin current via the inverse spin Hall effect is simultaneously resolved. We find that the charge current is generated well before the first electron-hole scattering event. Generation of the transverse current in the scattering-free ballistic transport regime provides unambiguous evidence for the intrinsic inverse spin Hall effect.  相似文献   

9.
We study the two-dimensional Hall effect with a random potential. The Hall conductivity is identified as a geometric invariant associated with an algebra of observables. Using the pairing betweenK-theory and cyclic cohomology theory, we identify this geometric invariant with a topological index, thereby giving the Hall conductivity a new interpretation.Supported in part by the National Science Foundation under Grant No. DMS-8717185  相似文献   

10.
11.
The quantum spin Hall (QSH) state of matter is usually considered to be protected by time-reversal (TR) symmetry. We investigate the fate of the QSH effect in the presence of the Rashba spin-orbit coupling and an exchange field, which break both inversion and TR symmetries. It is found that the QSH state characterized by nonzero spin Chern numbers C(±) = ±1 persists when the TR symmetry is broken. A topological phase transition from the TR-symmetry-broken QSH phase to a quantum anomalous Hall phase occurs at a critical exchange field, where the bulk band gap just closes. It is also shown that the transition from the TR-symmetry-broken QSH phase to an ordinary insulator state cannot happen without closing the band gap.  相似文献   

12.
The anomalous Hall effect is investigated experimentally and theoretically for ferromagnetic thin films of Mn5Ge3. We have separated the intrinsic and extrinsic contributions to the experimental anomalous Hall effect and calculated the intrinsic anomalous Hall conductivity from the Berry curvature of the Bloch states using first-principles methods. The intrinsic anomalous Hall conductivity depends linearly on the magnetization, which can be understood from the long-wavelength fluctuations of the spin orientation at finite temperatures. The quantitative agreement between theory and experiment is remarkably good, not only near 0 K but also at finite temperatures, up to about approximately 240 K (0.8TC).  相似文献   

13.
14.
We study dynamics of electrons in a magnetic field using a network model with two channels per link with random mixing, while the intrachannel potential is periodic (non-random); the channels represent two spin states. We consider channel mixing as function of the energy separation of the two extended states, and show that the phase diagram is different from the standard quantum Hall diagram for random intrachannel potential.  相似文献   

15.
16.
17.
A new model of momentum and electric field transfer between two adjacent 2D electron systems in the quantum Hall effect is proposed. The drag effect is due to momentum transfer from the vortex system of one layer to the vortex system of another layer. The remarkable result of this approach is a periodic change of sign of the dragged electric field as a function of the difference between the layer filling factors. Pis’ma Zh. éksp. Teor. Fiz. 67, No. 4, 276–279 (25 February 1998) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号