首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In poly[[bis(μ‐4,4′‐bi‐1H‐pyrazole‐κ2N2:N2′)bis(3‐carboxyadamantane‐1‐carboxylato‐κO1)cobalt(II)] dihydrate], {[Co(C12H15O4)2(C6H6N4)2]·2H2O}n, (I), the Co2+ cation lies on an inversion centre and the 4,4′‐bipyrazole (4,4′‐bpz) ligands are also situated across centres of inversion. In its non‐isomorphous cadmium analogue, {[Cd(C12H15O4)2(C6H6N4)2]·2H2O}n, (II), the Cd2+ cation lies on a twofold axis. In both compounds, the metal cations adopt an octahedral coordination, with four pyrazole N atoms in the equatorial plane [Co—N = 2.156 (2) and 2.162 (2) Å; Cd—N = 2.298 (2) and 2.321 (2) Å] and two axial carboxylate O atoms [Co—O = 2.1547 (18) Å and Cd—O = 2.347 (2) Å]. In both structures, interligand hydrogen bonding [N...O = 2.682 (3)–2.819 (3) Å] is essential for stabilization of the MN4O2 environment with its unusually high (for bulky adamantanecarboxylates) number of coordinated N‐donor co‐ligands. The compounds adopt two‐dimensional coordination connectivities and exist as square‐grid [M(4,4′‐bpz)2]n networks accommodating monodentate carboxylate ligands. The interlayer linkage is provided by hydrogen bonds from the carboxylic acid groups via the solvent water molecules [O...O = 2.565 (3) and 2.616 (3) Å] to the carboxylate groups in the next layer [O...O = 2.717 (3)–2.841 (3) Å], thereby extending the structures in the third dimension.  相似文献   

2.
Assemblies of pyrazine‐2,3‐dicarboxylic acid and CdII in the presence of bis(1,2,4‐triazol‐1‐yl)butane or bis(1,2,4‐triazol‐1‐yl)ethane under ambient conditions yielded two new coordination polymers, namely poly[[tetraaqua[μ2‐1,4‐bis(1,2,4‐triazol‐1‐yl)butane‐κ2N4:N4′]bis(μ2‐pyrazine‐2,3‐dicarboxylato‐κ3N1,O2:O3)dicadmium(II)] dihydrate], {[Cd2(C6H2N2O4)2(C8H12N6)(H2O)4]·2H2O}n, (I), and poly[[diaqua[μ2‐1,2‐bis(1,2,4‐triazol‐1‐yl)ethane‐κ2N4:N4′]bis(μ3‐pyrazine‐2,3‐dicarboxylato‐κ4N1,O2:O3:O3′)dicadmium(II)] dihydrate], {[Cd2(C6H2N2O4)2(C6H8N6)(H2O)2]·2H2O}n, (II). Complex (I) displays an interesting two‐dimensional wave‐like structure and forms a distinct extended three‐dimensional supramolecular structure with the help of O—H...N and O—H...O hydrogen bonds. Complex (II) has a three‐dimensional framework structure in which hydrogen bonds of the O—H...N and O—H...O types are found.  相似文献   

3.
Two new NiII complexes involving the ancillary ligand bis[(pyridin‐2‐yl)methyl]amine (bpma) and two different carboxylate ligands, i.e. homophthalate [hph; systematic name: 2‐(2‐carboxylatophenyl)acetate] and benzene‐1,2,4,5‐tetracarboxylate (btc), namely catena‐poly[[aqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)]‐μ‐2‐(2‐carboxylatophenyl)aceteto‐κ2O:O′], [Ni(C9H6O4)(C12H13N3)(H2O)]n, and (μ‐benzene‐1,2,4,5‐tetracarboxylato‐κ4O1,O2:O4,O5)bis(aqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)) bis(triaqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)) benzene‐1,2,4,5‐tetracarboxylate hexahydrate, [Ni2(C10H2O8)(C12H13N3)2(H2O)2]·[Ni(C12H13N3)(H2O)3]2(C10H2O8)·6H2O, (II), are presented. Compound (I) is a one‐dimensional polymer with hph acting as a bridging ligand and with the chains linked by weak C—H...O interactions. The structure of compound (II) is much more complex, with two independent NiII centres having different environments, one of them as part of centrosymmetric [Ni(bpma)(H2O)]2(btc) dinuclear complexes and the other in mononuclear [Ni(bpma)(H2O)3]2+ cations which (in a 2:1 ratio) provide charge balance for btc4− anions. A profuse hydrogen‐bonding scheme, where both coordinated and crystal water molecules play a crucial role, provides the supramolecular linkage of the different groups.  相似文献   

4.
3,4‐Dimethoxy‐trans‐cinnamic acid (Dmca) reacts with zinc sulfate in the presence of 4‐(1H‐pyrazol‐3‐yl)pyridine (L1) or 4,4′‐bipyridine (L2) under hydrothermal conditions to afford two mixed‐ligand coordination complexes, namely tetrakis(μ‐3,4‐dimethoxy‐trans‐cinnamato‐κ2O:O′)bis[[4‐(1H‐pyrazol‐3‐yl)pyridine]zinc(II)] heptahydrate, [Zn2(C11H11O4)4(C8H7N3)2]·7H2O or [Zn2(Dmca)4(L1)2]·7H2O, (I), and catena‐poly[[bis(3,4‐dimethoxy‐trans‐cinnamato‐κO)zinc(II)]‐μ‐4,4′‐bipyridine‐κ2N:N′], [Zn(C11H11O4)2(C10H8N2)]n or [Zn(Dmca)2(L2)]n, (II). The ZnII centres in the two compounds display different coordination polyhedra. In complex (I), the ZnII cation is five‐coordinated with a pseudo‐square‐pyramidal geometry, while in complex (II) the ZnII cation sits on a twofold axis and adopts a distorted tetrahedral coordination environment. Complex (I) features a centrosymmetric binuclear paddle‐wheel‐like structure, while complex (II) shows a chain structure. This study emphasizes the significant effect of the coordination mode of both carboxylate‐group and N‐donor coligands on the formation of complex structures.  相似文献   

5.
The CoII atom in bis(5‐aminotetrazole‐1‐acetato)tetraaquacobalt(II), [Co(C3H4N5O2)2(H2O)4], (I), is octahedrally coordinated by six O atoms from two 5‐aminotetrazole‐1‐acetate (atza) ligands and four water molecules. The molecule has a crystallographic centre of symmetry located at the CoII atom. The molecules of (I) are interlinked by hydrogen‐bond interactions, forming a two‐dimensional supramolecular network structure in the ac plane. The CdII atom in catena‐poly[[cadmium(II)]‐bis(μ‐5‐aminotetrazole‐1‐acetato], [Cd(C3H4N5O2)2]n, (II), lies on a twofold axis and is coordinated by two N atoms and four O atoms from four atza ligands to form a distorted octahedral coordination environment. The CdII centres are connected through tridentate atza bridging ligands to form a two‐dimensional layered structure extending along the ab plane, which is further linked into a three‐dimensional structure through hydrogen‐bond interactions.  相似文献   

6.
The combination of cobalt, 3,5‐di‐tert‐butyldioxolene (3,5‐dbdiox) and 1‐hydroxy‐1,2,4,5‐tetrakis(pyridin‐4‐yl)cyclohexane (tpch) yields two coordination polymers with different connectivities, i.e. a one‐dimensional zigzag chain and a two‐dimensional sheet. Poly[[bis(3,5‐di‐tert‐butylbenzene‐1,2‐diolato)bis(1,5‐di‐tert‐butyl‐4‐oxocyclohexa‐2,5‐dien‐1‐yl‐3‐olato)[μ4‐1‐hydroxy‐1,2,4,5‐tetrakis(pyridin‐4‐yl)cyclohexane]cobalt(III)]–ethanol–water 1/7/5], {[Co2(C14H20O2)4(C26H24N4O)]·7C2H5OH·5H2O}n or {[Co2(3,5‐dbdiox)4(tpch)}·7EtOH·5H2O}n, is the second structurally characterized example of a two‐dimensional coordination polymer based on linked {Co(3,5‐dbdiox)2} units. Variable‐temperature single‐crystal X‐ray diffraction studies suggest that catena‐poly[[[(3,5‐di‐tert‐butylbenzene‐1,2‐diolato)(1,5‐di‐tert‐butyl‐4‐oxocyclohexa‐2,5‐dien‐1‐yl‐3‐olato)cobalt(III)]‐μ‐1‐hydroxy‐1,2,4,5‐tetrakis(pyridin‐4‐yl)cyclohexane]–ethanol–water (1/1/5)], {[Co(C14H20O2)2(C26H24N4O)]·C2H5OH·5H2O}n or {[Co(3,5‐dbdiox)2(tpch)]·EtOH·5H2O}n, undergoes a temperature‐induced valence tautomeric interconversion.  相似文献   

7.
Three isotypic rare earth complexes, catena‐poly[[aquabis(but‐2‐enoato‐κ2O,O′)yttrium(III)]‐bis(μ‐but‐2‐enoato)‐κ3O,O′:O3O:O,O′‐[aquabis(but‐2‐enoato‐κ2O,O′)yttrium(III)]‐μ‐4,4′‐(ethane‐1,2‐diyl)dipyridine‐κ2N:N′], [Y2(C4H5O2)6(C12H12N2)(H2O)2], the gadolinium(III) analogue, [Gd2(C4H5O2)6(C12H12N2)(H2O)2], and the gadolinium(III) analogue with a 4,4′‐(ethene‐1,2‐diyl)dipyridine bridging ligand, [Gd2(C4H5O2)6(C12H10N2)(H2O)2], are one‐dimensional coordination polymers made up of centrosymmetric dinuclear [M(but‐2‐enoato)3(H2O)]2 units (M = rare earth), further bridged by centrosymmetric 4,4′‐(ethane‐1,2‐diyl)dipyridine or 4,4′‐(ethene‐1,2‐diyl)dipyridine spacers into sets of chains parallel to the [20] direction. There are intra‐chain and inter‐chain hydrogen bonds in the structures, the former providing cohesion of the linear arrays and the latter promoting the formation of broad planes parallel to (010).  相似文献   

8.
In the structure of the title compound, {[Rh2(C2H3O2)4(C7H18N2O)]·0.5C4H8O}n or {[Rh2(O2CMe)4(Hbdmap)]·0.5C4H8O}n, where Hbdmap is 1,3‐bis­(dimethyl­amino)propan‐2‐ol, each Hbdmap ligand is coordinated to two [Rh2(O2CMe)4] units by two N atoms, resulting in a polymeric chain structure. The observed coordination mode of the Hbdmap mol­ecule is unprecedented.  相似文献   

9.
In the title compound, catena‐poly[[[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]chloridozinc(II)]‐μ‐[1,1′‐biphenyl]‐4,4′‐dicarboxylato‐[[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]chloridozinc(II)]‐μ‐[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]], [Zn2(C14H8O4)Cl2(C26H22N4O2)3]n, the ZnII centre is four‐coordinate and approximately tetrahedral, bonding to one carboxylate O atom from a bidentate bridging dianionic [1,1′‐biphenyl]‐4,4′‐dicarboxylate ligand, to two pyridine N atoms from two N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide ligands and to one chloride ligand. The pyridyl ligands exhibit bidentate bridging and monodentate terminal coordination modes. The bidentate bridging pyridyl ligand and the bridging [1,1′‐biphenyl]‐4,4′‐dicarboxylate ligand both lie on special positions, with inversion centres at the mid‐points of their central C—C bonds. These bridging groups link the ZnII centres into a one‐dimensional tape structure that propagates along the crystallographic b direction. The tapes are interlinked into a two‐dimensional layer in the ab plane through N—H...O hydrogen bonds between the monodentate ligands. In addition, the thermal stability and solid‐state photoluminescence properties of the title compound are reported.  相似文献   

10.
In the crystals of the five title compounds, tetrakis‐(μ‐3,3‐dimethylbutyrato‐O:O′)bis(ethanol‐O)dicopper(II)–ethanol (1/2), [Cu2(C6H11O2)4(C2H6O)2]·2C2H6O, (I), tetrakis(μ‐3,3‐dimethylbutyrato‐O:O′)bis(2‐methylpyridine‐N)di­copper(II), [Cu2(C6H11O2)4(C6H7N)2], (II), tetrakis‐(μ‐3,3‐dimethylbutyrato‐O:O′)bis(3‐methylpyridine‐N)di‐copper(II), [Cu2(C6H11O2)4(C6H7N)2], (III), tetrakis‐(μ‐3,3‐dimethylbutyrato‐O:O′)bis(4‐methylpyridine‐N)di‐copper(II), [Cu2(C6H11O2)4(C6H7N)2], (IV), and tetrakis‐(μ‐3,3‐dimethylbutyrato‐O:O′)bis(3,3‐dimethylbutyric acid‐O)dicopper(II), [Cu2(C6H11O2)4(C6H12O2)2], (V), the di­nuclear CuII complexes all have centrosymmetric cage structures and (IV) has two independent molecules. The Cu?Cu separations are: (I) 2.602 (3) Å, (II) 2.666 (3) Å, (III) 2.640 (2) Å, (IV) 2.638 (4) Å and (V) 2.599 (1) Å.  相似文献   

11.
Seven crystal structures of five first‐row (Fe, Co, Ni, Cu, and Zn) and one second‐row (Cd) transition metal–4‐picoline (pic)–sulfate complexes of the form [M(pic)x]SO4 are reported. These complexes are catena‐poly[[tetrakis(4‐methylpyridine‐κN)metal(II)]‐μ‐sulfato‐κ2O:O′], [M(SO4)(C6H7N)4]n, where the metal/M is iron, cobalt, nickel, and cadmium, di‐μ‐sulfato‐κ4O:O‐bis[tris(4‐methylpyridine‐κN)copper(II)], [Cu2(SO4)2(C6H7N)6], catena‐poly[[bis(4‐methylpyridine‐κN)zinc(II)]‐μ‐sulfato‐κ2O:O′], [Zn(SO4)(C6H7N)2]n, and catena‐poly[[tris(4‐methylpyridine‐κN)zinc(II)]‐μ‐sulfato‐κ2O:O′], [Zn(SO4)(C6H7N)3]n. The Fe, Co, Ni, and Cd compounds are isomorphous, displaying polymeric crystal structures with infinite chains of MII ions adopting an octahedral N4O2 coordination environment that involves four picoline ligands and two bridging sulfate anions. The Cu compound features a dimeric crystal structure, with the CuII ions possessing square‐pyramidal N3O2 coordination environments that contain three picoline ligands and two bridging sulfate anions. Zinc crystallizes in two forms, one exhibiting a polymeric crystal structure with infinite chains of ZnII ions adopting a tetrahedral N2O2 coordination containing two picoline ligands and two bridging sulfate anions, and the other exhibiting a polymeric crystal structure with infinite chains of ZnII ions adopting a trigonal bipyramidal N3O2 coordination containing three picoline ligands and two bridging sulfate anions. The structures are compared with the analogous pyridine complexes, and the observed coordination environments are examined in relation to crystal field theory.  相似文献   

12.
The compounds poly[di‐μ4‐succinato‐μ2‐1,2‐di‐4‐pyridylethane‐dicopper(II)], [Cu2(C4H4O4)2(C12H12N2)]n, (I), and poly[di‐μ4‐succinato‐μ2‐1,3‐di‐4‐pyridylpropane‐dicopper(II)], [Cu2(C4H4O4)2(C13H14N2)]n, (II), exhibit polymeric structures with the dicopper units doubly bridged by bis‐bidentate succinate groups and crosslinked by the separator bis(pyridyl) molecules. In (I), the molecule exhibits a centre of inversion located midway between the core Cu‐dimer atoms and another that relates half of the bis(pyridyl)ethane ligand to the other half. Compound (II) has a similar molecular packing but with a doubled lattice constant and noncentrosymmetric core units. An antiferromagnetic interaction due to the dinuclear copper units was deduced from magnetic subsceptibility measurements, and spin triplet signals were detected in the electron paramagnetic resonance spectra for both compounds.  相似文献   

13.
A new 1,3,4‐thiadiazole bridging ligand, namely 3,3′‐[1,3,4‐thiadiazole‐2,5‐diyldi(thiomethylene)]dibenzoic acid (L), has been used to create the novel isomorphous complexes bis{μ‐3,3′‐[1,3,4‐thiadiazole‐2,5‐diyldi(thiomethylene)]dibenzoato}bis[(N,N‐dimethylformamide)copper(II)], [Cu2(C18H12N2O4S3)2(C3H7NO)2], (I), and bis{μ‐3,3′‐[1,3,4‐thiadiazole‐2,5‐diyldi(thiomethylene)]dibenzoato}bis[(N,N‐dimethylformamide)zinc(II)], [Zn2(C18H12N2O4S3)2(C3H7NO)2], (II). Both exist as centrosymmetric bicyclic dimers constructed through the synsyn bidentate bridging mode of the carboxylate groups. The two rings share a metal–metal bond and each of the metal atoms possesses a square‐pyramidal geometry capped by the dimethylformamide molecule. The 1,3,4‐thiadiazole rings play a critical role in the formation of a π–π stacking system that expands the dimensionality of the structure from zero to one. The thermogravimetric analysis of (I) indicates decomposition of the coordinated ligands on heating. Compared with the fluorescence of L in the solid state, the fluorescence intensity of (II) is relatively enhanced with a slight redshift, while that of (I) is quenched.  相似文献   

14.
In the crystals of bis(pyridine‐N)tetrakis(μ‐trimethylsilylacetato‐O:O′)dicopper(II), [Cu2(C5H11O2Si)4(C5H5N)2], (I), the dinuclear CuII complexes have cage structures with Cu?Cu distances of 2.632 (1) and 2.635 (1) Å. In the crystals of bis(2‐­methylpyridine‐N)tetrakis(μ‐trimethylsilylacetato‐O:O′)dicopper(II), [Cu2(C5H11O2Si)4(C6H7N)2], (II), bis­(3‐methylpyridine‐N)tetrakis(μ‐trimethylsilylacetato‐O:O′)dicopper(II), [Cu2(C5H11O2Si)4(C6H7N)2], (III), and bis(quinoline‐N)­tetrakis(μ‐­trimethylsilylacetato‐O:O′)dicopper(II), [Cu2(C5H11O2Si)4(C9H7N)2], (IV), the centrosymmetric dinuclear CuII complexes have a cage structure with Cu?Cu distances of 2.664 (1), 2.638 (3) and 2.665 (1) Å, respectively. In the crystals of catena‐poly­[tetrakis(μ‐trimethylsilylacetato‐O:O′)dicopper(II)], [Cu2(C5H11O2Si)4]n, (V), the dinuclear CuII units of a cage structure are linked by the cyclic Cu—O bonds at the apical positions to form a linear chain by use of a glide translation.  相似文献   

15.
The crystal structures of three first‐row transition metal–pyridine–sulfate complexes, namely catena‐poly[[tetrakis(pyridine‐κN)nickel(II)]‐μ‐sulfato‐κ2O:O′], [Ni(SO4)(C5H5N)4]n, (1), di‐μ‐sulfato‐κ4O:O‐bis[tris(pyridine‐κN)copper(II)], [Cu2(SO4)2(C5H5N)6], (2), and catena‐poly[[tetrakis(pyridine‐κN)zinc(II)]‐μ‐sulfato‐κ2O:O′‐[bis(pyridine‐κN)zinc(II)]‐μ‐sulfato‐κ2O:O′], [Zn2(SO4)2(C5H5N)6]n, (3), are reported. Ni compound (1) displays a polymeric crystal structure, with infinite chains of NiII atoms adopting an octahedral N4O2 coordination environment that involves four pyridine ligands and two bridging sulfate ligands. Cu compound (2) features a dimeric molecular structure, with the CuII atoms possessing square‐pyramidal N3O2 coordination environments that contain three pyridine ligands and two bridging sulfate ligands. Zn compound (3) exhibits a polymeric crystal structure of infinite chains, with two alternating zinc coordination environments, i.e. octahedral N4O2 coordination involving four pyridine ligands and two bridging sulfate ligands, and tetrahedral N2O2 coordination containing two pyridine ligands and two bridging sulfate ligands. The observed coordination environments are consistent with those predicted by crystal field theory.  相似文献   

16.
The title compound, [Co2(C12H11N2)2(C12H10N2)(H2O)8][Co(H2O)6](SO4)4·8H2O, consists of bis(4‐pyridyl)ethenedicobalt(II) cations, hexaaqua­cobalt cations, sulfate anions and water solvent molecules that are linked by hydrogen bonds into a network structure. In the hexaaquacobalt cation, the six water molecules are coordinated in an octahedral geometry to the Co atom, which lies on an inversion centre. The other cation is a 1,2‐bis(4‐pyridyl)ethene‐bridged centrosymmetric dimer, consisting of protonated 1,2‐bis(4‐pyridyl)­ethene cations, a bridging 1,2‐bis(4‐pyridyl)ethene ligand and tetraaqua­cobalt cations. Each Co atom is six‐coordinated by four water molecules and two N atoms from a protonated 1,2‐bis(4‐pyridyl)ethene cation and the bridging 1,2‐bis(4‐pyridyl)­ethene ligand, and the geometry around each Co atom is octahedral.  相似文献   

17.
Reaction of the Grignard reagent with polydentate nitrogen‐donor ligands yields new species with rare magnesium coordination and possible catalytic activity. In the first of the title compounds, poly[[μ4‐dihydrobis(pyrazol‐1‐yl)borato‐κ2N,N′]potassium(I)], [K(C6H8BN4)]n, (I), polymeric chains form a two‐dimensional network in the [100] plane. Each potassium ion is coordinated by four N atoms of pyrazolyl ligands, while weak (μ‐BH)...K+ interactions additionally stabilize the structure. The K and B atoms both lie on a mirror plane. In three new structures obtained by disproportionation of the Grignard reagent, each Mg atom is bound to a κ2N,N′‐type ligand, forming the basal plane, and tetrahydrofuran molecules occupy the axial positions. Di‐μ‐chlorido‐bis[dihydridobis(pyrazol‐1‐yl)borato]tris(tetrahydrofuran)dimagnesium(II), [Mg2(C6H8BN4)2Cl2(C4H8O)3], (II), adopts a dimeric structure with μ‐Cl—Mg interactions. One of the Mg atoms has an octahedral coordination, while the other has a distorted square‐pyramidal environment. However, in the bis‐chelate compounds bis[dihydridobis(pyrazol‐1‐yl)borato‐κ2N,N′](tetrahydrofuran‐κO)magnesium(II), [Mg(C6H8BN4)2(C4H8O)], (III), and bis[dihydridobis(pyrazol‐1‐yl)borato‐κ2N,N′]bis(tetrahydrofuran‐κO)magnesium(II), [Mg(C6H8BN4)2(C4H8O)2], (IV), the Mg atoms have square‐pyramidal and octahedral environments, respectively. The Mg atom in (IV) lies on an inversion centre.  相似文献   

18.
In the crystal structure of the title complex, poly­[[di­azidocobalt(II)]‐di‐μ‐1,4‐bis(1,2,4‐triazol‐1‐yl­methyl)­benzene‐κ4N4:N4′], [Co(N3)2(bbtz)2]n, where bbtz is 1,4‐bis(1,2,4‐triazol‐1‐yl­methyl)­benzene (C12H12N6), the CoII atom, which lies on an inversion centre, is six‐coordinated by four N atoms from four bbtz ligands and by two N atoms from two azide ligands, in a distorted octahedral coordination environment. The CoII atoms are bridged by four bbtz ligands to form a two‐dimensional [4,4]‐network.  相似文献   

19.
Three novel coordination polymers (CPs), namely poly[[di‐μ‐aqua‐bis{μ4‐3,3′‐[(5‐carboxylato‐1,3‐phenylene)bis(oxy)]dibenzoato‐κ5O1:O1′,O3:O5:O5′}bis(1,10‐phenanthroline‐κ2N,N′)trinickel(II)] dimethylformamide 1.5‐solvate trihydrate], {[Ni3(C21H11O8)2(C12H8N2)2(H2O)2]·1.5C3H7NO·3H2O}n, (I), poly[[di‐μ‐aqua‐bis{μ4‐3,3′‐[(5‐carboxylato‐1,3‐phenylene)bis(oxy)]dibenzoato‐κ5O1:O1′,O3:O5:O5′}bis(1,10‐phenanthroline‐κ2N,N′)tricobalt(II)] diethylamine disolvate tetrahydrate], {[Co3(C21H11O8)2(C12H8N2)2(H2O)2]·2C2H7N·4H2O}n, (II), and catena‐poly[[aqua(1,10‐phenanthroline‐κ2N,N′)zinc(II)]‐μ‐5‐(3‐carboxyphenoxy)‐3,3′‐oxydibenzoato‐κ2O1:O3], [Zn(C21H12O8)(C12H8N2)(H2O)]n, (III), have been synthesized by the reaction of different metal ions (Ni2+, Co2+ and Zn2+), 3,3′‐[(5‐carboxy‐1,3‐phenylbis(oxy)]dibenzoic acid (H3cpboda) and 1,10‐phenanthroline (phen) under solvothermal conditions. All the CPs were characterized by elemental analysis, single‐crystal and powder X‐ray diffraction, FT–IR spectroscopy and thermogravimetric analysis. Complexes (I) and (II) have isomorphous structures, featuring similar linear trinuclear structural units, in which the central NiII/CoII atom is located on an inversion centre with a slightly distorted octahedral [NiO6]/[CoO6] geometry. This comprises four carboxylate O‐atom donors from two cpboda3? ligands and two O‐atom donors from bridging water molecules. The terminal NiII/CoII groups are each connected to the central NiII/CoII cation through two μ1,3‐carboxylate groups from two cpboda3? ligands and one water bridge, giving rise to linear trinuclear [M32‐H2O)2(RCOO)4] (M = Ni2+/Co2+) secondary building units (SBUs) and the SBUs develop two‐dimensional‐networks parallel to the (100) plane via cpboda3? ligands with new (32·4)2(32·83·9)2(34·42.82·94·103) topological structures. Zinc complex (III) displays one‐dimensional coordination chains and the five‐coordinated Zn atom forms a distorted square‐pyramidal [ZnO3N2] geometry, which is completed by two carboxylate O‐atom donors from two distinct Hcpboda2? ligands, one O atom from H2O and two N atoms from a chelating phen ligand. Magnetically, CP (I) shows weak ferromagnetic interactions involving the carboxylate groups, and bridging water molecules between the nickel(II) ions, and CP (II) shows antiferromagnetic interactions between the Co2+ ions. The solid‐state luminescence properties of CP (III) were examined at ambient temperature and the luminescence sensing of Cr2O72?/CrO42? anions in aqueous solution for (III) has also been investigated.  相似文献   

20.
The two title complexes, catena‐poly[[{2,2′‐[1,3‐propane­diylbis(nitrilo­methyl­idyne)]diphenolato}cobalt(III)]‐μ‐azido], [Co(C17H16N2O2)(N3)]n, (I), and catena‐poly[[{2,2′‐[1,3‐propane­diylbis(nitrilo­methyl­idyne)]diphenolato}cobalt(III)]‐μ‐thio­cyanato], [Co(C17H16N2O2)(NCS)]n, (II), are isomorphous polynuclear cobalt(III) compounds. In both structures, the CoIII atom is six‐coordinated in an octa­hedral configuration by two N atoms and two O atoms of one Schiff base, and two terminal N or S atoms from two bridging ligands. The [N,N′‐bis­(salicyl­idene)propane‐1,3‐diaminato]cobalt(III) moieties are linked by the bridging ligands, viz. azide in (I) and thio­cyanate in (II), giving zigzag polymeric chains with backbones of the type [–Co—N—N—N—Co]n in (I) or [–Co—N—C—S—Co]n in (II) running along the c axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号