首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Benzothiazole derivatives are a class of privileged molecules due to their biological activity and pharmaceutical applications. One route to these molecules is via intramolecular cyclization of thioureas to form substituted 2‐aminobenzothiazoles, but this often requires harsh conditions or employs expensive metal catalysts. Herein, the copper(II)‐ and gold(III)‐mediated cyclizations of thioureas to substituted 2‐aminobenzothiazoles are reported. The single‐crystal X‐ray structures of the thiourea N‐(3‐methoxyphenyl)‐N ′‐(pyridin‐2‐yl)thiourea, C13H13N3OS, and the intermediate metal complexes aquabis[5‐methoxy‐N‐(pyridin‐2‐yl‐κN )‐1,3‐benzothiazol‐2‐amine‐κN 3]copper(II) dinitrate, [Cu(C13H11N3OS)2(H2O)](NO3)2, and bis{2‐[(5‐methoxy‐1,3‐benzothiazol‐2‐yl)amino]pyridin‐1‐ium} dichloridogold(I) chloride monohydrate, (C13H12N3OS)2[AuCl2]Cl·H2O, are reported. The copper complex exhibits a distorted trigonal–bipyramidal geometry, with direct metal‐to‐benzothiazole‐ligand coordination, while the gold complex is a salt containing the protonated uncoordinated benzothiazole, and offers evidence that metal reduction (in this case, AuIII to AuI) is required for the cyclization to proceed. As such, this study provides further mechanistic insight into the role of the metal cations in these transformations.  相似文献   

2.
Two noble metal complexes involving ancillary chloride ligands and chelating 2,2′‐bipyridylamine (Hdpa) or its deprotonated derivative (dpa), namely [bis(pyridin‐2‐yl‐κN)amine]tetrachloridoplatinum(IV), [PtCl4(C10H9N3)], and [bis(pyridin‐2‐yl‐κN)aminido]dichloridogold(III), [AuCl2(C10H8N3)], are presented and structurally characterized. The metal atom in the former has a slightly distorted octahedral coordination environment, formed by four chloride ligands and two pyridyl N atoms of Hdpa, while the metal atom in the latter has a slightly distorted square‐planar coordination environment, formed by two chloride ligands and two pyridyl N atoms of dpa. The difference in conjugation between the pyridine rings in normal and deprotonated 2,2′‐dipyridylamine is discussed on the basis of the structural features of these complexes. The influence of weak interactions on the supramolecular structures of the complexes, providing one‐dimensional chains of [PtCl4(C10H9N3)] and dimers of [AuCl2(C10H8N3)], are discussed.  相似文献   

3.
The structure of the hydrated gold(III) tetrachloride salt of l ‐ecgonine {hydronium tetrakis[(1R,2R,3S,5S,8S)‐3‐hydroxy‐8‐methyl‐8‐azoniabicyclo[3.2.1]octane‐2‐carboxylate pentakis[tetrachloridoaurate(III)] hexahydrate}, (C9H16NO3)4(H3O)[AuCl4]5·6H2O, demonstrates an unprecedented stoichiometric relationship between the cations and anions in the unit cell. The previous tropane alkaloid structures, including the related hydrochloride salts, all have a cation–anion ratio of 1:1, as does the anhydrous salt described here, namely (1R,2R,3S,5S,8S)‐3‐hydroxy‐8‐methyl‐8‐azoniabicyclo[3.2.1]octane‐2‐carboxylate tetrachloridoaurate(III), (C9H16NO3)[AuCl4]. The hydrated salt, however, consists of four monopositive N‐protonated units of the alkaloid and five [AuCl4] counter‐ions, plus seven solvent water molecules. The H atom required for change balance has been assigned to a water molecule. In addition, the hydrate has a novel arrangement, with all seven of the water molecules and all of the O atoms in the cations participating in an alternating arrangement of interleaved sheets of the anionic species. Both the hydrate and the anhydrous salt of the same toxicologically important marker for cocaine show that the cation and anion are in close proximity to each other, as was found in the gold(III) tetrachloride salt of l ‐cocaine.  相似文献   

4.
1‐[6‐(1H‐Pyrrolo[2,3‐b]pyridin‐1‐yl)pyridin‐2‐yl]‐1H‐pyrrolo[2,3‐b]pyridin‐7‐ium tetrachloridoferrate(III), (C19H14N5)[FeCl4], (II), and [2,6‐bis(1H‐pyrrolo[2,3‐b]pyridin‐1‐yl‐κN7)pyridine‐κN]bis(nitrato‐κO)copper(II), [Cu(NO3)2(C19H13N5)], (III), were prepared by self‐assembly from FeCl3·6H2O or Cu(NO3)2·3H2O and 2,6‐bis(1H‐pyrrolo[2,3‐b]pyridin‐1‐yl)pyridine [commonly called 2,6‐bis(azaindole)pyridine, bap], C19H13N5, (I). Compound (I) crystallizes with Z′ = 2 in the P space group, with both independent molecules adopting a transtrans conformation. Compound (II) is a salt complex with weak C—H...Cl interactions giving rise to a zigzag network with π‐stacking down the a axis. Complex (III) lies across a twofold rotation axis in the C2/c space group. The CuII center in (III) has an N3O2 trigonal–bipyramidal environment. The nitrate ligand coordinates in a monodentate fashion, while the bap ligand adopts a twisted tridentate binding mode. C—H...O interactions give rise to a ribbon motif.  相似文献   

5.
Different salts of the 2‐phenyl‐1,10‐phenanthrolin‐1‐ium cation, (pnpH)+, are obtained by reacting 2‐phenyl‐1,10‐phenanthroline (pnp), C18H12N2, (I), with a variety of anions, such as hexafluoridophosphate, C18H13N2+·PF6, (II), trifluoromethanesulfonate, C18H13N2+·CF3SO3, (III), tetrachloridoaurate, (C18H13N2)[AuCl4], (IV), and bromide (as the dihydrate), C18H13N2+·Br·2H2O, (V). Compound (I) crystallizes with Z′ = 2, with both independent molecules adopting a coplanar conformation. In (II)–(IV), a hydrogen bond exists between the cation and anion, while one of the lattice water molecules serves as a hydrogen‐bonded bridge between the cation and anion in (V). Reaction of (I) with HAuCl4 gives the salt complex (IV); however, reaction with KAuCl4 produces the monodentate complex trichlorido(2‐phenyl‐1,10‐phenanthroline‐κN10)gold(III), [AuCl3(C18H12N2)], (VI). Dichlorido(2‐phenyl‐1,10‐phenanthroline‐κ2N,N′)copper(II), [CuCl2(C18H12N2)], (VII), results from the reaction of CuCl2·2H2O and (I), in which the CuII center adopts a tetrahedrally distorted square‐planar geometry. The pendent phenyl ring twists to a bisecting position relative to the phenanthroline plane. The square‐planar PdII complex, bromido[2‐(phenanthrolin‐2‐yl)phenyl‐κ3C1,N,N′]palladium(II), [PdBr(C18H11N2)], (VIII), is obtained from the reaction of (I) with [PdCl2(cycloocta‐1,5‐diene)], followed by addition of bromine. A coplanar geometry for the pendent ring is adopted as a result of the tridentate bonding motif.  相似文献   

6.
Crystallographic analysis of a solid solution of two diastereoisomers, i.e. ({(1S,R)‐1‐carboxy‐3‐[(R,S)‐methylsulfinyl]propyl}aminocarbonyl)methanaminium tetrachloridoaurate(III) and ({(1S,R)‐1‐carboxy‐3‐[(S,R)‐methylsulfinyl]propyl}aminocarbonyl)methanaminium tetrachloridoaurate(III), (C7H15N2O4S)[AuCl4], has shown that in the presence of gold(III), the methionine part of the Gly‐d ,l ‐Met dipeptide is oxidized to sulfoxide, and no coordination to the AuIII cation through the S atom of the sulfoxide is observed. In view of our observation, literature reports that methionine acts as an N,S‐bidentate donor ligand forming stable gold(III) complexes require verification. Moreover, it has been demonstrated that crystallization of the oxidation product leads to a substantial 77:23 excess of both S‐methionine/R‐sulfoxide and R‐methionine/S‐sulfoxide over S‐methionine/S‐sulfoxide and R‐methionine/R‐sulfoxide. The presence of two different diastereoisomers at the same crystallographic site is a source of static disorder at this site.  相似文献   

7.
Three photoluminescent complexes containing either ZnII or CdII have been synthesized and their structures determined. Bis[4‐amino‐3,5‐bis(pyridin‐2‐yl)‐1,2,4‐triazole‐κ2N 1,N 5]bis(dicyanamido‐κN 1)zinc(II), [Zn(C12H10N6)2(C2N3)2], (I), bis[4‐amino‐3,5‐bis(pyridin‐2‐yl)‐1,2,4‐triazole‐κ2N 1,N 5]bis(dicyanamido‐κN 1)cadmium(II), [Cd(C12H10N6)2(C2N3)2], (II), and bis[4‐amino‐3,5‐bis(pyridin‐2‐yl)‐1,2,4‐triazole‐κ2N 1,N 5]bis(tricyanomethanido‐κN 1)cadmium(II), [Cd(C12H10N6)2(C4N3)2], (III), all crystallize in the space group P , with the metal centres lying on centres of inversion, but neither analogues (I) and (II) nor CdII complexes (II) and (III) are isomorphous. A combination of N—H…N and C—H…N hydrogen bonds and π–π stacking interactions generates three‐dimensional framework structures in (I) and (II), and a sheet structure in (III). The photoluminescence spectra of (I)–(III) indicate that the energies of the π–π* transitions in the coordinated triazole ligand are modified by minor changes of the ligand geometry associated with coordination to the metal centres.  相似文献   

8.
In the title compound, (C6H8N4)[AuCl4]Cl, the 4,4′‐bi(1H‐pyrazol‐2‐ium) dication, denoted [H2bpz]2+, is situated across a centre of inversion, the [AuCl4] anion lies across a twofold axis passing through Cl—Au—Cl, and the Cl anion resides on a twofold axis. Conventional N—H...Cl hydrogen bonding [N...Cl = 3.109 (3) and 3.127 (3) Å, and N—H...Cl = 151 and 155°] between [H2bpz]2+ cations (square‐planar node) and chloride anions (tetrahedral node), as complementary donors and acceptors of four hydrogen bonds, leads to a three‐dimensional binodal four‐connected framework with cooperite topology (three‐letter notation pts). The framework contains channels along the c axis housing one‐dimensional stacks of square‐planar [AuCl4] anions [Au—Cl = 2.2895 (10)–2.2903 (16) Å; interanion Au...Cl contact = 3.489 (2) Å], which are excluded from primary hydrogen bonding with the [H2bpz]2+ tectons.  相似文献   

9.
In order to explore the potential propensity of the 1,1′‐methylenedipyridinium dication to form organic–inorganic hybrid ionic compounds by reaction with the appropriate halide metal salt, the organic–inorganic hybrid salts 1,1′‐methylenedipyridinium tetrachloridocuprate(II), (C11H12N2)[CuCl4], (I), and 1,1′‐methylenedipyridinium bis[tetrachloridoaurate(III)], (C11H12N2)[AuCl4]2, (II), were obtained by treatment of 1,1′‐methylenedipyridinium dichloride with CuCl2 and Na[AuCl4], respectively. Both hybrid salts were isolated as pure compounds, fully characterized by multinuclear NMR spectroscopy and their molecular structures confirmed by powder X‐ray diffraction studies. The crystal structures consist of discrete 1,1′‐methylenedipyridinium dications and [CuCl4]2− and [AuCl4] anions for (I) and (II), respectively. As expected, the dications form a butterfly shape; the CuII centre of [CuCl4]2− has a distorted tetrahedral configuration and the AuIII centre of [AuCl4] shows a square‐planar coordination. The ionic species of (I) and the dication of (II) each have twofold axial symmetry, while the two [AuCl4] anions are located on a mirror‐plane site. Both crystal structures are stabilized by intermolecular C—H...Cl hydrogen bonds and also by Cl...π interactions. It is noteworthy that, while the average intermolecular centroid–centroid pyridinium ring distance in (I) is 3.643 (8) Å, giving strong evidence for noncovalent π–π ring interactions, for (II), the shortest centroid–centroid distance between pyridinium rings of 5.502 (9) Å is too long for any significant π–π ring interactions, which might be due to the bulk of the two [AuCl4] anions.  相似文献   

10.
Due to their versatile coordination modes and metal‐binding conformations, triazolyl ligands can provide a wide range of possibilities for the construction of supramolecular structures. Seven mononuclear transition metal complexes with different structural forms, namely aquabis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]zinc(II), [Zn(C14H11N4)2(H2O)], (I), bis[5‐(4‐methylphenyl)‐3‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole‐κ2N 3,N 4]bis(nitrato‐κO )zinc(II), [Zn(NO3)2(C14H12N4)2], (II), bis(methanol‐κO )bis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]zinc(II), [Zn(C14H11N4)2(CH4O)2], (III), diiodidobis[5‐(4‐methylphenyl)‐3‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole‐κ2N 3,N 4]cadmium(II), [CdI2(C14H12N4)2], (IV), bis[5‐(4‐methylphenyl)‐3‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole‐κ2N 3,N 4]bis(nitrato‐κO )cadmium(II), [Cd(NO3)2(C14H12N4)2], (V), aquabis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]cobalt(II), [Co(C14H11N4)2(H2O)], (VI), and diaquabis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]nickel(II), [Ni(C14H11N4)2(H2O)2], (VII), have been prepared by the reaction of transition metal salts (ZnII, CdII, CoII and NiII) with 3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole (pymphtzH) under either ambient or hydrothermal conditions. These compounds have been characterized by elemental analysis, IR spectroscopy and single‐crystal X‐ray diffraction. All the complexes form three‐dimensional supramolecular structures through hydrogen bonds or through π–π stacking interactions between the centroids of the pyridyl or arene rings. The pymphtzH and pymphtz entities act as bidentate coordinating ligands in each structure. Moreover, all the pyridyl N atoms are coordinated to metal atoms (Zn, Cd, Co or Ni). The N atom in the 4‐position of the triazole group is coordinated to the Zn and Cd atoms in the crystal structures of (II), (IV) and (V), while the N atom in the 1‐position of the triazolate group is coordinated to the Zn, Co and Ni atoms in (I), (III), (VI) and (VII).  相似文献   

11.
The reaction of cationic diolefinic rhodium(I) complexes with 2‐(diphenylphosphino)benzaldehyde (pCHO) was studied. [Rh(cod)2]ClO4 (cod=cycloocta‐1,5‐diene) reacted with pCHO to undergo the oxidative addition of one pCHO with (1,2,3‐η)cyclooct‐2‐en‐1‐yl (η3‐C8H13) formation, and the coordination of a second pCHO molecule as (phosphino‐κP)aldehyde‐κO(σ‐coordination) chelate to give the 18e acyl(allyl)rhodium(III) species [Rh(η3‐C8H13)(pCO)(pCHO)]ClO4 (see 1 ). Complex 1 reacted with [Rh(cod)(PR3)2]ClO4 (R=aryl) derivatives 3 – 6 to give stable pentacoordinated 16e acyl[(1,2,3‐η)‐cyclooct‐2‐en‐1‐yl]rhodium(III) species [Rh(η3‐C8H13)(pCO)(PR3)]ClO4 7 – 10 . The (1,2,3‐η)‐cyclooct‐2‐en‐1‐yl complexes contain cis‐positioned P‐atoms and were fully characterized by NMR, and the molecular structure of 1 was determined by X‐ray crystal diffraction. The rhodium(III) complex 1 catalyzed the hydroformylation of hex‐1‐ene and produced 98% of aldehydes (n/iso=2.6).  相似文献   

12.
The structures of rac‐bis(ethane‐1,2‐diamine)(oxamato‐κ2O1,O2)cobalt(III) bis(trifluoromethanesulfonate) dihydrate, [Co(C2H2NO3)(C2H8N2)2](CF3SO3)2·2H2O, (I), and Λ(+)578‐bis(ethane‐1,2‐diamine)[oxamato(2−)‐κ2N,O1]cobalt(III) trifluoromethanesulfonate, [Co(C2HNO3)(C2H8N2)2]CF3SO3, (II), are compared. Together, the two complexes constitute the first pair of linkage isomers of bidentate oxamate available for structural comparison.  相似文献   

13.
The reaction between 2‐[2‐(aminoethyl)amino]ethanol and pyridine‐2‐carbaldehyde in a 1:2 molar ratio affords a mixture containing 2‐({2‐[(pyridin‐2‐ylmethylidene)amino]ethyl}amino)ethanol (PMAE) and 2‐[2‐(pyridin‐2‐yl)oxazolidin‐3‐yl]‐N‐(pyridin‐2‐ylmethylidene)ethanamine (POPME). Treatment of this mixture with copper(II) chloride or cadmium(II) chloride gave trichlorido[(2‐hydroxyethyl)({2‐[(pyridin‐2‐ylmethylidene)amino]ethyl})azanium]copper(II) monohydrate, [Cu(C10H16N3O)Cl3]·H2O or [Cu(HPMAE)Cl3]·H2O, 1 , and dichlorido{2‐[2‐(pyridin‐2‐yl)oxazolidin‐3‐yl]‐N‐(pyridin‐2‐ylmethylidene)ethanamine}cadmium(II), [CdCl2(C16H18N4O)] or [CdCl2(POPME)], 2 , which were characterized by elemental analysis, FT–IR, Raman and 1H NMR spectroscopy and single‐crystal X‐ray diffraction. PMAE is potentially a tetradentate N3O‐donor ligand but coordinates to copper here as an N2 donor. In the structure of 1 , the geometry around the Cu atom is distorted square pyramidal. In 2 , the Cd atom has a distorted octahedral geometry. In addition to the hydrogen bonds, there are π–π stacking interactions between the pyridine rings in the crystal packing of 1 and 2 . The ability of PMAE, POPME and 1 to interact with ten selected biomolecules (BRAF kinase, CatB, DNA gyrase, HDAC7, rHA, RNR, TrxR, TS, Top II and B‐DNA) was investigated by docking studies and compared with doxorubicin.  相似文献   

14.
The structures of the title complexes, (C6H15N2)2[MoS4], (I), and (C6H16N2)[MoS4], (II), can be described as consisting of discrete tetra­hedral [MoS4]2− dianions that are linked to the organic ammonium cations via weak hydrogen‐bonding inter­actions. The asymmetric unit of (I) consists of a single (±)‐trans‐2‐amino­cyclo­hexyl­ammonium cation in a general position and an [MoS4]2− anion located on a twofold axis, while in (II), two crystallographically independent trans‐cyclo­hexane‐1,4‐diammonium cations located on centres of inversion and one [MoS4]2− anion in a general position are found. The differing dispositions of the amine functionalities in the organic cations in the title complexes lead to different crystal packing arrangements in (I) and (II).  相似文献   

15.
Two new salts of the cation [CuI(dmp)2]+ (dmp is 2,9‐dimeth­yl‐1,10‐phenanthroline, C14H12N2), namely bis­[bis­(2,9‐dimeth­yl‐1,10‐phenanthroline‐κ2N,N′)copper(I)] bis­(hexa­fluorophos­phate) hemi[bis­(4‐pyridylmethyl­idene)hydrazine] acetonitrile solvate, [Cu(C14H12N2)2]2(PF6)2·0.5C12H10N4·C2H3N or [Cu(dmp)2]2(PF6)2·0.5(bpmh)·CH3CN [bpmh is bis­(4‐pyridylmethyl­idene)hydrazine, C12H10N4], (I), and bis­(2,9‐dimeth­yl‐1,10‐phenanthroline‐κ2N,N′)copper(I) dicyanamide, [Cu(C14H12N2)2](C2N3) or [Cu(dmp)2][N(CN)2], (II), are reported. The Cu—N bond lengths and the distortion from idealized tetra­hedral geometry of the dmp ligands are discussed and compared with related compounds. The bpmh molecule in (I) is π–π stacked with a dmp ligand at a distance of 3.4 Å, rather than coordinated to the metal atom. The molecule lies across an inversion center in the crystal. In (II), the normally coordinated dicyanamide mol­ecule is present as an uncoordinated counter‐ion.  相似文献   

16.
Single crystals of the title complex, tris(1,6‐di­hydro‐9H‐purine‐6‐thione‐N7,S)­iron(II) tetra­chloro­ferrate(III) chloride, [Fe(C5H4N4S)3][FeCl4]Cl, were grown on the surface of solid 6‐mercaptopurine monohydrate pellets in a solution of iron(III) chloride. The solution of the hexagonal structure required the application of twin refinement techniques. All the component ions lie on threefold rotation axes. The complex contains distorted octahedral [Fe(C5H4N4S)3]2+ cations with three N7/S6‐chelating neutral 6‐mercaptopurine ligands, tetrahedral [FeCl4]? anions with a mean Fe—Cl distance of 2.189 (1) Å, and free chloride ions.  相似文献   

17.
The reaction of 2‐cyanopyridine with N‐phenylthiosemicarbazide afforded 2‐[amino(pyridin‐2‐yl)methylidene]‐N‐phenylhydrazine‐1‐carbothioamide (Ham4ph) and crystals of 4‐phenyl‐5‐(pyridin‐2‐yl)‐2,4‐dihydro‐3H‐1,2,4‐triazole‐3‐thione (pyph3NS, 1 , C13H10N4S). Crystals of methyl 2‐{[4‐phenyl‐5‐(pyridin‐2‐yl)‐4H‐1,2,4‐triazol‐3‐yl]sulfanyl}acetate (phpy2NS, 2 , C16H14N4O2S), derived from 1 , were obtained by the reaction of Ham4ph with chloroacetic acid, followed by the acid‐catalyzed esterification of the carboxylic acid with methyl alcohol. Crystals of bis(methanol‐κO)bis(methyl 2‐{[4‐phenyl‐5‐(pyridin‐2‐yl)‐4H‐1,2,4‐triazol‐3‐yl‐κ2N1,N5]sulfanyl}acetato)zinc(II)/cadmium(II) hexabromidocadmate(II), [Zn0.76Cd0.24(C16H14N4O2S)2(CH3OH)2][Cd2Br6] or [Zn0.76Cd0.24(phpy2NS)2(MeOH)2][Cd2Br6], 3 , and dichlorido(methyl 2‐{[4‐phenyl‐5‐(pyridin‐2‐yl)‐4H‐1,2,4‐triazol‐3‐yl‐κ2N1,N5]sulfanyl}acetato)mercury(II), [HgCl2(C16H14N4O2S)] or [Hg(phpy2NS)Cl2], 4 , were synthesized using ligand 2 and CdBr2 or HgCl2, respectively. The molecular and supramolecular structures of the compounds were studied by X‐ray diffractometry. The asymmetric unit of 3 is formed from CdBr3 and M(phpy2NS)(MeOH) units, where the metal centre M has a 76% occupancy of ZnII and 24% of CdII. The M2+ centre of the cation, located on a crystallographic inversion centre, is hexacoordinated and appears as a slightly distorted octahedral [MN4O2]2+ cation. The Cd centre of the anion is coordinated by two terminal bromide ligands and two bridging bromide ligands that generate [Cd2Br6]2? cadmium–bromide clusters. These clusters display crystallographic inversion symmetry forming two edge‐shared tetrahedra and serve as agents that direct the structure in the formation of supramolecular assemblies. In mononuclear complex 4 , the coordination geometry around the Hg2+ ion is distorted tetrahedral and comprises two chloride ligands and two N‐atom donors from the phpy2NS ligand, viz. one pyridine N atom and the other from triazole. In the crystal packing, all four compounds exhibit weak intermolecular interactions, which facilitate the formation of three‐dimensional architectures. Along with the noncovalent interactions, the structural diversity in the complexes can be attributed to the metal centre and to the coordination geometry, as well as to its ionic or neutral character.  相似文献   

18.
A new 3d–4f heterometallic polymer, poly[[aqua‐μ3‐chlorido‐[μ3‐4‐(pyridin‐4‐yl)benzoato]tris[μ2‐4‐(pyridin‐4‐yl)benzoato]dicopper(I)erbium(III)] dihydrate], {[Cu2Er(C12H8NO2)4Cl(H2O)]·2H2O}n, was synthesized by the hydrothermal reaction of Er2O3, CuCl2·2H2O and 4‐(pyridin‐4‐yl)benzoic acid in the presence of HClO4. The asymmetric unit contains one Er3+ cation, two Cu+ cations, one Cl anion, four deprotonated 4‐(pyridin‐4‐yl)benzoate ligands, one coordinated aqua ligand and two solvent water molecules. This tubular one‐dimensional polymer is constructed from alternating clusters of europium(III)–water and copper(I) chloride bridged by 4‐(pyridin‐4‐yl)benzoate ligands. Extensive hydrogen‐bonding interactions involving both the coordinated and the solvent water molecules provide further stabilization to the structure.  相似文献   

19.
The title compound, (C6H9N2S)[ZnCl3{SC(NH2)2}], exists as a zincate where the zinc(II) centre is coordinated by three chloride ligands and a thiourea ligand to form the anion. The organic cation adopts the protonated 4,6‐dimethyl‐2‐sulfanylidenepyrimidin‐1‐ium (L) form of 4,6‐dimethylpyrimidine‐2(1H)‐thione. Two short N—H...Cl hydrogen bonds involving the pyrimidine H atoms and the [ZnCl3L] anion form a crystallographically centrosymmetric dimeric unit consisting of two anions and two cations. The packing structure is completed by longer‐range hydrogen bonds donated by the thiourea NH2 groups to chloride ligand hydrogen‐bond acceptors.  相似文献   

20.
Six new gold(III) complexes [Au(bzpam)Cl2] (1, bzpamH = N‐benzyl picolinamide), [Au(hetpam)Cl2] (2, hetpamH = N‐(2‐hydroxyethyl) picolinamide), [Au(pypam)Cl]AuCl4 (3, pypamH = N‐(pyridin‐2‐ylmethyl) picolinamide), [Au(dmepam)Cl]AuCl4 (4, dmepamH = N‐(2‐(dimethylamino)ethyl) picolinamide), [Au(bhetpydam)Cl] (5, bhetpydamH2 = N,N′‐bis(2‐hydroxyethyl) pyridine‐ 2,6‐dicarboxamide) and [Au2(hedam)Cl4] (6, hedamH2 = N,N′‐(hexane‐1,6‐diyl) dipicolinamide) with deprotonated pyridyl carboxamide were synthesized and characterized by elemental analysis, molar conductivity, IR, H1 NMR and C13 NMR techniques. The analytical data showed that deprotonated pyridyl carboxamide coordinated with gold(III) ions through a nitrogen atom. The cytotoxicity against Bel‐7402 and HL‐60 cell lines was tested by MTT (3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide) and SRB (sulforhodamine B) assays. The results indicated that the complexes exerted cytotoxic effects against Bel‐7402 and HL‐60 cell lines, complex 6 had better cytotoxicity than cisplatin, and complex 3 displayed similar cytotoxicity to cisplatin against Bel‐7402 cell line. The results suggested that the characteristics of ligands had an important effect on cytotoxicity of complexes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号