首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The title compound, [Cu2(C9H10NO3)2(NO3)2(C10H8N2)(H2O)2]n, contains CuII atoms and l ‐tyrosinate (l ‐tyr) and 4,4′‐bipyridine (4,4′‐bipy) ligands in a 2:2:1 ratio. Each Cu atom is coordinated by one amino N atom and two carboxylate O atoms from two l ‐tyr ligands, one N atom from a 4,4′‐bipy ligand, a monodentate nitrate ion and a water molecule in an elongated octahedral geometry. Adjacent Cu atoms are bridged by the bidentate carboxylate groups into a chain. These chains are further linked by the bridging 4,4′‐bipy ligands, forming an undulated chiral two‐dimensional sheet. O—H...O and N—H...O hydrogen bonds connect the sheets in the [100] direction. This study offers useful information for the engineering of chiral coordination polymers with amino acids and 4,4′‐bipy ligands by considering the ratios of the metal ion and organic components.  相似文献   

2.
The title compounds, dimethylammonium 2‐{4‐[1‐(4‐carboxymethoxyphenyl)‐1‐methylethyl]phenoxy}acetate, C2H8N+·C19H19O6, (I), and 2,2′‐[isopropylidenebis(p‐phenyleneoxy)]diacetic acid–4,4′‐bipyridine (1/1), C19H20O6·C10H8N2, (II), are 1:1 adducts of 2,2′‐[isopropylidenebis(p‐phenyleneoxy)]diacetic acid (H2L) with dimethylammonium or 4,4′‐bipyridine. The component ions in (I) are linked by N—H...O, O—H...O and C—H...O hydrogen bonds into continuous two‐dimensional layers parallel to the (001) plane. Adjacent layers are stacked via C—H...O hydrogen bonds into a three‐dimensional network with an –ABAB– alternation of the two‐dimensional layers. In (II), two H2L molecules, one bipy molecule and two half bipy molecules are linked by O—H...N hydrogen bonds into one‐dimensional chains and rectanglar‐shaped rings. They are assembled viaπ–π stacking interactions and C—H...O hydrogen bonds into an intriguing zero‐dimensional plus one‐dimensional poly(pseudo)rotaxane motif.  相似文献   

3.
catena‐Poly[[[tetra­aqua­nickel(II)]‐μ‐4,4′‐bipyridine‐κ2N:N′] thio­sulfate dihydrate], {[Ni(C10H8N2)(H2O)4]S2O3·2H2O}n, (I), and catena‐poly[[[tetra­aqua­nickel(II)]‐μ‐4,4′‐bipyridine‐κ2N:N′] sulfate methanol solvate monohydrate], {[Ni(C10H8N2)(H2O)4]SO4·CH4O·H2O}n, (II), are built up of {[Ni(4,4′‐bipy)(H2O)4]2+}n chains (4,4′‐bipy is 4,4′‐bipyridine) inter­woven in an unusual P31 fashion. Voids are filled by the corresponding counter‐anions and solvate mol­ecules, defining a complex three‐dimensional network surrounding them. In both structures, the cationic chains evolve around a set of twofold axes passing through the NiII ions and bis­ecting the aromatic amines through their N (and their opposite C) atoms.  相似文献   

4.
With regard to crystal engineering, building block or modular assembly methodologies have shown great success in the design and construction of metal–organic coordination polymers. The critical factor for the construction of coordination polymers is the rational choice of the organic building blocks and the metal centre. The reaction of Zn(OAc)2·2H2O (OAc is acetate) with 3‐nitrobenzoic acid (HNBA) and 4,4′‐bipyridine (4,4′‐bipy) under hydrothermal conditions produced a two‐dimensional zinc(II) supramolecular architecture, catena‐poly[[bis(3‐nitrobenzoato‐κ2O,O′)zinc(II)]‐μ‐4,4′‐bipyridine‐κ2N:N′], [Zn(C7H4NO4)2(C10H8N2)]n or [Zn(NBA)2(4,4′‐bipy)]n, which was characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single‐crystal X‐ray diffraction analysis. The ZnII ions are connected by the 4,4′‐bipy ligands to form a one‐dimensional zigzag chain and the chains are decorated with anionic NBA ligands which interact further through aromatic π–π stacking interactions, expanding the structure into a threefold interpenetrated two‐dimensional supramolecular architecture. The solid‐state fluorescence analysis indicates a slight blue shift compared with pure 4,4′‐bipyridine and HNBA.  相似文献   

5.
The reaction of Cu(NO3)2·3H2O with 2,4′‐oxybis(benzoic acid) and 4,4′‐bipyridine under hydrothermal conditions produced a new mixed‐ligand two‐dimensional copper(II) coordination polymer, namely poly[[(μ‐4,4′‐bipyridine‐κ2N ,N ′)[μ‐2,4′‐oxybis(benzoato)‐κ4O 2,O 2′:O 4,O 4′]copper(II)] monohydrate], {[Cu(C14H8O5)(C10H8N2)]·H2O}n , which was characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single‐crystal X‐ray diffraction. The X‐ray diffraction crystal structure analysis reveals that the CuII ions are connected to form a two‐dimensional wave‐like network through 4,4′‐bipyridine and 2,4′‐oxybis(benzoate) ligands. The two‐dimensional layers are expanded into a three‐dimensional supramolecular structure through intermolecular O—H…O and C—H…O hydrogen bonds. Furthermore, magnetic susceptibility measurements indicate that the complex shows weak antiferromagnetic interactions between adjacent CuII ions.  相似文献   

6.
The reaction of CoSO4 with 2,4‐oxydibenzoic acid (H2oba) and 4,4′‐bipyridine (bipy) under hydrothermal condition yielded a new one‐dimensional cobalt(II) coordination polymer, {[Co(C14H9O5)2(C10H8N2)(H2O)2]·2H2O}n, which was characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, magnetic properties and single‐crystal X‐ray diffraction. The CoII ions are connected by bipy ligands into infinite one‐dimensional chains. The Hoba ligands extend out from the two sides of the one‐dimensional chain. O—H...O hydrogen bonding extends these chains into a two‐dimensional supramolecular architecture.  相似文献   

7.
Fluorine is the most electronegative element and can be used as an excellent hydrogen‐bond acceptor. Fluorous coordination compounds exhibit several advantageous properties, such as enhanced high thermal and oxidative stability, low polarity, weak intermolecular interactions and a small surface tension compared to hydrocarbons. C—H…F—C interactions, although weak, play a significant role in regulating the arrangement of the organic molecules in the crystalline state and stabilizing the secondary structure. Two cadmium(II) fluorous coordination compounds formed from 2,2′‐bipyridine, 4,4′‐bipyridine and pentafluorobenzoate ligands, namely catena‐poly[[aqua(2,2′‐bipyridine‐κ2N ,N ′)(2,3,4,5,6‐pentafluorobenzoato‐κO )cadmium(II)]‐μ‐2,3,4,5,6‐pentafluorobenzoato‐κ2O :O ′], [Cd(C7F5O2)2(C10H8N2)(H2O)]n , (1), and catena‐poly[[diaquabis(2,3,4,5,6‐pentafluorobenzoato‐κO )cadmium(II)]‐μ‐4,4′‐bipyridine‐κ2N :N ′], [Cd(C7F5O2)2(C10H8N2)(H2O)2]n , (2), have been synthesized solvothermally and structurally characterized. Compound (1) shows a one‐dimensional chain structure composed of Cd—O coordination bonds and is stabilized by π–π stacking and O—H…O hydrogen‐bond interactions. Compound (2) displays a one‐dimensional linear chain structure formed by Cd—N coordination interactions involving the 4,4′‐bipyridine ligand. Adjacent one‐dimensional chains are extended into two‐dimensional sheets by O—H…O hydrogen bonds between the coordinated water molecules and adjacent carboxylate groups. Moreover, the chains are further linked by C—H…F—C interactions to afford a three‐dimensional network. In both structures, hydrogen bonding involving the coordinated water molecules is a primary driving force in the formation of the supramolecular structures.  相似文献   

8.
In the title compound, {[Co(SO4)(C10H8N2)(H2O)3]·C2H6O2}n, each CoII center is octa­hedrally coordinated by two N atoms from two bridging 4,4′‐bipyridine (bipy) ligands and four O atoms, one from a monodentate sulfate ligand and three from aqua ligands. The bipy ligands occupy special positions of site symmetry and bridge adjacent cobalt(II) centers to form one‐dimensional linear coordination chains. Adjacent chains are arranged in a cross‐like fashion around the mid‐point of the bipy ligands, resulting in a three‐dimensional supra­molecular array.  相似文献   

9.
The title compound, [Cu2(SO4)2(C10H8N2)2(C2H6O2)2(H2O)2]n, contains two crystallographically unique CuII centres, each lying on a twofold axis and having a slightly distorted octahedral environment. One CuII centre is coordinated by two bridging 4,4′‐bipyridine (4,4′‐bipy) ligands, two sulfate anions and two aqua ligands. The second is surrounded by two 4,4′‐bipy N atoms and four O atoms, two from bridging sulfate anions and two from ethane‐1,2‐diol ligands. The sulfate anion bridges adjacent CuII centres, leading to the formation of linear ...Cu1–Cu2–Cu1–Cu2... chains. Adjacent chains are further bridged by 4,4′‐bipy ligands, which are also located on the twofold axis, resulting in a two‐dimensional layered polymer. In the crystal structure, extensive O—H...O hydrogen‐bonding interactions between water molecules, ethane‐1,2‐diol molecules and sulfate anions lead to the formation of a three‐dimensional supramolecular network structure.  相似文献   

10.
Two one‐dimensional (1D) coordination polymers (CPs), namely catena‐poly[[[aqua(2,2′‐bipyridine‐κ2N,N′)(nitrato‐κO)copper(II)]‐μ‐1,3‐bis(pyridin‐4‐yl)propane‐κ2N:N′] nitrate], {[Cu(NO3)(C10H8N2)(C13H14N2)(H2O)]·NO3}n ( 1 ), and catena‐poly[[[aqua(nitrato‐κO)(1,10‐phenanthroline‐κ2N,N′)copper(II)]‐μ‐1,3‐bis(pyridin‐4‐yl)propane‐κ2N:N′] nitrate], {[Cu(NO3)(C12H8N2)(C13H14N2)(H2O)]·NO3}n ( 2 ), have been synthesized using [Cu(NO3)(NN)(H2O)2]NO3, where NN = 2,2′‐bipyridine (bpy) or 1,10‐phenanthroline (phen), as a linker in a 1:1 molar ratio. The CPs were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single‐crystal X‐ray structure determination. The 1,3‐bis(pyridin‐4‐yl)propane (dpp) ligand acts as a bridging ligand, leading to the formation of a 1D polymer. The octahedral coordination sphere around copper consists of two N atoms from bpy for 1 or phen for 2 , two N atoms from dpp, one O atom from water and one O atom from a coordinated nitrate anion. Each structure contains two crystallographically independent chains in the asymmetric unit and the chains are linked via hydrogen bonds into a three‐dimensional network.  相似文献   

11.
The title compound, {[Cu(C10H8N2)(H2O)](C8H4O4)0.5·H2O}n, has been synthesized hydro­thermally and characterized by single‐crystal X‐ray diffraction. The compound consists of nearly linear one‐dimensional chains of [Cu(4,4′‐bipy)(H2O)]nn+ cations (4,4′‐bipy is 4,4′‐bipyridyl), surrounded by isophthalate anions and free water mol­ecules. Hydro­gen‐bonding interactions involving cationic chains, isophthalate anions and free water mol­ecules lead to the formation of a three‐dimensional network structure.  相似文献   

12.
The structure of the title compound, [NiCu(CN)4(C10H8N2)(H2O)2]n or [{Cu(H2O)2}(μ‐C10H8N2)(μ‐CN)2{Ni(CN)2}]n, was shown to be a metal–organic cyanide‐bridged framework, composed essentially of –Cu–4,4′‐bpy–Cu–4,4′‐bpy–Cu– chains (4,4′‐bpy is 4,4′‐bipyridine) linked by [Ni(CN)4]2− anions. Both metal atoms sit on special positions; the CuII atom occupies an inversion center, while the NiII atom of the cyanometallate sits on a twofold axis. The 4,4′‐bpy ligand is also situated about a center of symmetry, located at the center of the bridging C—C bond. The scientific impact of this structure lies in the unique manner in which the framework is built up. The arrangement of the –Cu–4,4′‐bpy–Cu–4,4′‐bpy–Cu– chains, which are mutually perpendicular and non‐intersecting, creates large channels running parallel to the c axis. Within these channels, the [Ni(CN)4]2− anions coordinate to successive CuII atoms, forming zigzag –Cu—N[triple‐bond]C—Ni—C[triple‐bond]N—Cu– chains. In this manner, a three‐dimensional framework structure is constructed. To the authors' knowledge, this arrangement has not been observed in any of the many copper(II)–4,4′‐bipyridine framework complexes synthesized to date. The coordination environment of the CuII atom is completed by two water molecules. The framework is further strengthened by O—H...N hydrogen bonds involving the water molecules and the symmetry‐equivalent nonbridging cyanide N atoms.  相似文献   

13.
Reaction of 5,5′‐methylenedisalicylic acid (5,5′‐H4mdsa) with 4,4′‐bipyridine (4,4′‐bipy) and manganese(II) acetate under hydrothermal conditions led to the unexpected 2:3 binary cocrystal 4,4′‐methylenediphenol–4,4′‐bipyridine (2/3), C13H12O2·1.5C10H8N2 or (4,4′‐H2dhdp)(4,4′‐bipy)1.5, which is formed with a concomitant decarboxylation. The asymmetric unit contains one and a half 4,4′‐bipy molecules, one of which straddles a centre of inversion, and one 4,4′‐H2dhdp molecule. O—H...N interactions between the hydroxy and pyridyl groups lead to a discrete ribbon motif with an unusual 2:3 stoichiometric ratio of strong hydrogen‐bonding donors and acceptors. One of the pyridyl N‐atom donors is not involved in hydrogen‐bond formation. Additional weak C—H...O interactions between 4,4′‐bipy and 4,4′‐H2dhdp molecules complete a two‐dimensional bilayer supramolecular structure.  相似文献   

14.
In the chiral polymeric title compound, poly[aqua(4,4′‐bipyridine)[μ3S‐carboxylatomethyl‐N‐(p‐tosyl)‐l ‐cysteinato]manganese(II)], [Mn(C12H13NO6S2)(C10H8N2)(H2O)]n, the MnII ion is coordinated in a distorted octahedral geometry by one water molecule, three carboxylate O atoms from three S‐carboxyatomethyl‐N‐(p‐tosyl)‐l ‐cysteinate (Ts‐cmc) ligands and two N atoms from two 4,4′‐bipyridine molecules. Each Ts‐cmc ligand behaves as a chiral μ3‐linker connecting three MnII ions. The two‐dimensional frameworks thus formed are further connected by 4,4′‐bipyridine ligands into a three‐dimensional homochiral metal–organic framework. This is a rare case of a homochiral metal–organic framework with a flexible chiral ligand as linker, and this result demonstrates the important role of noncovalent interactions in stabilizing such assemblies.  相似文献   

15.
In catena‐poly­[[(di‐2‐pyridyl­amine‐κ2N,N′)silver(I)]‐μ‐nico­tinato‐κ2N:O], [Ag(C6H4NO2)(C10H9N3)]n, the AgI atom is tetracoordinated by two N atoms from the di‐2‐pyridyl­amine (BPA) ligand [Ag—N = 2.3785 (18) and 2.3298 (18) Å] and by one N atom and one carboxyl­ate O atom from nicotinate ligands [Ag—N = 2.2827 (15) Å and Ag—O = 2.3636 (14) Å]. Bridging by nicotinate N and O atoms generates a polymeric chain structure, which extends along [100]. The carboxyl O atom not bonded to the Ag atom takes part in an intrachain C—H⋯O hydrogen bond, further stabilizing the chain. Pairs of chains are linked by N—H⋯O hydrogen bonds to generate ribbons. There are no π–π interactions in this complex. In catena‐poly­[[(di‐2‐pyridyl­amine‐κ2N,N′)silver(I)]‐μ‐2,6‐di­hydroxy­benzoato‐κ2O1:O2], [Ag(C7H5O4)(C10H9N3)]n, the AgI atom has a distorted tetrahedral coordination, with three strong bonds to two pyridine N atoms from the BPA ligand [Ag—N = 2.286 (5) and 2.320 (5) Å] and to one carboxyl­ate O atom from the 2,6‐di­hydroxy­benzoate ligand [Ag—O = 2.222 (4) Å]; the fourth, weaker, Ag‐atom coordination is to one of the phenol O atoms [Ag⋯O = 2.703 (4) Å] of an adjacent moiety, and this interaction generates a polymeric chain along [100]. Pairs of chains are linked about inversion centers by N—H⋯O hydrogen bonds to form ribbons, within which there are π–π interactions. The ribbons are linked about inversion centers by pairs of C—H⋯O hydrogen bonds and additional π–π interactions between inversion‐related pairs of 2,6‐di­hydroxy­benzoate ligands to generate a three‐dimensional network.  相似文献   

16.
A new coordination polymer (CP), namely poly[(μ‐4,4′‐bipyridine)(μ3‐3,4′‐oxydibenzoato)cobalt(II)], [Co(C14H8O5)(C10H8N2)]n or [Co(3,4′‐obb)(4,4′‐bipy)]n ( 1 ), was prepared by the self‐assembly of Co(NO3)2·6H2O with the rarely used 3,4′‐oxydibenzoic acid (3,4′‐obbH2) ligand and 4,4′‐bipyridine (4,4′‐bipy) under solvothermal conditions, and has been structurally characterized by elemental analysis, IR spectroscopy, single‐crystal X‐ray crystallography and powder X‐ray diffraction (PXRD). Single‐crystal X‐ray diffraction reveals that each CoII ion is six‐coordinated by four O atoms from three 3,4′‐obb2? ligands, of which two function as monodentate ligands and the other as a bidentate ligand, and by two N atoms from bridging 4,4′‐bipy ligands, thereby forming a distorted octahedral CoN2O4 coordination geometry. Adjacent crystallographically equivalent CoII ions are bridged by the O atoms of 3,4′‐obb2? ligands, affording an eight‐membered Co2O4C2 ring which is further extended into a two‐dimensional [Co(3,4′‐obb)]n sheet along the ab plane via 3,4′‐obb2? functioning as a bidentate bridging ligand. The planes are interlinked into a three‐dimensional [Co(3,4′‐obb)(4,4′‐bipy)]n network by 4,4′‐bipy ligands acting as pillars along the c axis. Magnetic investigations on CP 1 disclose an antiferromagnetic coupling within the dimeric Co2 unit and a metamagnetic behaviour at low temperature resulting from intermolecular π–π interactions between the parallel 4,4′‐bipy ligands.  相似文献   

17.
The title compound, [CoII(C10H8O6)(C10H8N2)(H2O)2]n, was obtained by the hydro­thermal reaction of CoSO4 with benzene‐1,4‐dioxy­di­acetate [systematic name: p‐phenyl­ene­bis­(oxy­acetate)] and 4,4′‐bi­pyridine (4,4′‐bpy). The Co atom lies at an inversion center and the benzene‐1,4‐dioxydiacetate and 4,4′‐bipyridine moieties lie about other inversion centers. The benzene‐1,4‐dioxydiacetate ligands bridge the octahedral CoII coordination centers, forming a one‐dimensional zigzag chain. The chains are further bridged by 4,4′‐bpy ligands, forming a novel two‐dimensional supramolecular architecture. Hydro­gen‐bonding interactions between the coordinated water mol­ecules and the carboxyl­ate O atoms lead to the formation of a three‐dimensional network structure.  相似文献   

18.
The title compound, {[Cu(NO3)(C2H4N2)(C10H8N2S2)(H2O)]NO3·H2O}n, is composed of a one‐dimensional linear coordination polymer involving cis‐protected copper(II) ions and a 4,4′‐dithiodipyridine bridging ligand. The polymeric chains run along the c‐axis direction. N—H...O and O—H...O hydrogen bonds involving the coordinating amine groups, nitrate ions and water molecules, as well as cocrystallized noncoordinating nitrate ions and water molecules, generate a three‐dimensional structure.  相似文献   

19.
4,4′‐Bipyridine cocrystallizes with 3‐hydroxy‐2‐naphthoic acid in a 1:2 ratio to give a centrosymmetric three‐component supra­molecular adduct, namely 3‐hydroxy‐2‐naphthoic acid–4,4′‐bipyridine (2/1), C11H8O3·0.5C10H8N2, in which 4,4′‐bipyridine is located on an inversion center. The pyridine–carboxylic acid heterosynthon generates an infinite one‐dimensional hydrogen‐bonded chain viaπ–π inter­actions between naphthyl and 4,4′‐bipyridine groups. The one‐dimensional chains are further assembled into a three‐dimensional network by weak C—H⋯π inter­actions between pyridyl and naphthyl rings, and C—H⋯O inter­actions between 3‐hydroxy‐2‐naphthoic acid mol­ecules.  相似文献   

20.
Coordination polymers (CPs) have attracted increasing interest in recent years. In this work, two new CPs, namely poly[[aquabis(2,2′‐bipyridine‐κ2N,N′){μ3‐5‐[(4‐carboxylatophenoxy)methyl]benzene‐1,3‐dicarboxylato‐κ4O1,O1′:O3:O5}(μ‐formato‐κ3O:O,O′)dicadmium(II)] monohydrate], {[Cd2(C16H9O7)(HCO2)(C10H8N2)2(H2O)]·H2O}n ( 1 ), and poly[[(2,2′‐bipyridine‐κ2N,N′){μ3‐5‐[(4‐carboxylphenoxy)methyl]benzene‐1,3‐dicarboxylato‐κ4O1,O1′:O3:O5}manganese(II)] sesquihydrate], {[Mn(C16H10O7)(C10H8N2)]·1.5H2O}n ( 2 ), have been prepared using the tricarboxylic acid 5‐[(4‐carboxyphenoxy)methyl]benzene‐1,3‐dicarboxylic acid and 2,2′‐bipyridine under hydrothermal conditions. CP 1 displays a two‐dimensional layer structure which is further extended into a three‐dimensional (3D) supramolecular structure via intermolecular π–π interactions, while CP 2 shows a different 3D supramolecular structure extended from one‐dimensional ladder chains by intermolecular π–π interactions. In addition, the solid‐state luminescence spectra of 1 and 2 were studied at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号