首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 2,4‐diamino‐6‐methyl‐1,3,5‐triazin‐1‐ium (acetoguanaminium) hydrogen phthalate, C4H8N5+·C8H5O4, (I), acetoguanaminium hydrogen maleate, C4H8N5+·C4H3O4, (II), and acetoguanaminium 3‐hydroxypicolinate monohydrate, C4H8N5+·C6H4NO3·H2O, (III), the acetoguanaminium cations interact with the carboxylate groups of the corresponding anions via a pair of nearly parallel N—H...O hydrogen bonds, forming R22(8) ring motifs. In (II) and (III), N—H...N base‐pairing is observed, while there is none in (I). In (II), a series of fused R32(8), R22(8) and R32(8) hydrogen‐bonded rings plus fused R22(8), R62(12) and R22(8) ring motifs occur alternately, aggregating into a supramolecular ladder‐like arrangement. In (III), R22(8) motifs occur on either side of a further ring formed by pairs of N—H...O hydrogen bonds, forming an array of three fused hydrogen‐bonded rings. In (I) and (II), the anions form a typical intramolecular O—H...O hydrogen bond with graph set S(7), whereas in (III) an intramolecular hydrogen bond with graph set S(6) is formed.  相似文献   

2.
The title salts, 4‐chloroanilinium hydrogen phthalate (PCAHP), C6H7ClN+·C8H5O4, 2‐hydroxyanilinium hydrogen phthalate (2HAHP), C6H8NO+·C8H5O4, and 3‐hydroxyanilinium hydrogen phthalate (3HAHP), C6H8NO+·C8H5O4, all crystallize in the space group P21/c. The asymmetric unit of 2HAHP contains two independent ion pairs. The hydrogen phthalate ions of 2HAHP and 3HAHP show a short intramolecular O—H...O hydrogen bond, with O...O distances ranging from 2.3832 (15) to 2.3860 (14) Å. N—H...O and O—H...O hydrogen bonds, together with short C—H...O contacts in PCAHP and 3HAHP, generate extended hydrogen‐bond networks. PCAHP forms a two‐dimensional supramolecular sheet extending in the (100) plane, whereas 2HAHP has a supramolecular chain running parallel to the [100] direction and 3HAHP has a two‐dimensional network extending parallel to the (001) plane.  相似文献   

3.
In the title compound, 4‐iodoanilinium 2‐carboxy‐6‐nitrobenzoate, C6H7IN+·C8H4NO6, the anions are linked by an O—H...O hydrogen bond [H...O = 1.78 Å, O...O = 2.614 (3) Å and O—H...O = 171°] into C(7) chains, and these chains are linked by two two‐centre N—H...O hydrogen bonds [H...O = 1.86 and 1.92 Å, N...O = 2.700 (3) and 2.786 (3) Å, and N—H...O = 153 and 158°] and one three‐centre N—H...(O)2 hydrogen bond [H...O = 2.02 and 2.41 Å, N...O = 2.896 (3) and 2.789 (3) Å, N—H...O = 162 and 105°, and O...H...O = 92°], thus forming sheets con­taining R(6), R(8), R(13) and R(18) rings.  相似文献   

4.
In the title compounds, 4‐carboxyanilinium (2R,3R)‐tartrate, C7H8NO2+·C4H5O6, (I), and 4‐aminobenzoic acid, C7H7NO2, (II), the carboxyl planes of the 4‐carboxyanilinium cations/4‐aminobenzoic acid are twisted from the aromatic plane. In (I), the characteristic head‐to‐tail interactions are observed through the tartrate anions, forming two C22(7) chain motifs propagating parallel to the a and c axes of the unit cell. Also, the tartrate anions are connected through two primary C11(6) and C11(7) chain motifs, leading to a secondary R44(22) ring motif. In (II), head‐to‐tail interaction is seen through a discrete D11(2) motif and carboxyl group dimerization is observed through centrosymmetrically related R22(8) motifs around the inversion centres of the unit cell. The crystal structures of both compounds are stabilized by intricate three‐dimensional hydrogen‐bonding networks. Alternate hydrophobic and hydrophilic layers are observed in (I) as a result of a column‐like arrangement of the anions and the aromatic rings of the cations.  相似文献   

5.
The three pyran structures 6‐methylamino‐5‐nitro‐2,4‐diphenyl‐4H‐pyran‐3‐carbonitrile, C19H15N3O3, (I), 4‐(3‐fluorophenyl)‐6‐methylamino‐5‐nitro‐2‐phenyl‐4H‐pyran‐3‐carbonitrile, C19H14FN3O3, (II), and 4‐(4‐chlorophenyl)‐6‐methylamino‐5‐nitro‐2‐phenyl‐4H‐pyran‐3‐carbonitrile, C19H14ClN3O3, (III), differ in the nature of the aryl group at the 4‐position. The heterocyclic ring in all three structures adopts a flattened boat conformation. The dihedral angle between the pseudo‐axial phenyl substituent and the flat part of the pyran ring is 89.97 (1)° in (I), 80.11 (1)° in (II) and 87.77 (1)° in (III). In all three crystal structures, a strong intramolecular N—H...O hydrogen bond links the flat conjugated H—N—C=C—N—O fragment into a six‐membered ring. In (II), molecules are linked into dimeric aggregates by N—H... O(nitro) hydrogen bonds, generating an R22(12) graph‐set motif. In (III), intermolecular N—H...N and C—H...N hydrogen bonds link the molecules into a linear chain pattern generating C(8) and C(9) graph‐set motifs, respectively.  相似文献   

6.
Aminopyrimidine derivatives are biologically important as they are components of nucleic acids and drugs. The crystals of two new salts, namely cytosinium 6‐chloronicotinate monohydrate, C4H6N3O+·C6H3ClNO2·H2O, ( I ), and 5‐bromo‐6‐methylisocytosinium hydrogen sulfate (or 2‐amino‐5‐bromo‐4‐oxo‐6‐methylpyrimidinium hydrogen sulfate), C5H7BrN3O+·HSO4, ( II ), have been prepared and characterized by single‐crystal X‐ray diffraction. The pyrimidine ring of both compounds is protonated at the imine N atom. In hydrated salt ( I ), the primary R22(8) ring motif (supramolecular heterosynthon) is formed via a pair of N—H…O(carboxylate) hydrogen bonds. The cations, anions and water molecule are hydrogen bonded through N—H…O, N—H…N, O—H…O and C—H…O hydrogen bonds, forming R22(8), R32(7) and R55(21) motifs, leading to a hydrogen‐bonded supramolecular sheet structure. The supramolecular double sheet structure is formed via water–carboxylate O—H…O hydrogen bonds and π–π interactions between the anions and the cations. In salt ( II ), the hydrogen sulfate ions are linked via O—H…O hydrogen bonds to generate zigzag chains. The aminopyrimidinium cations are embedded between these zigzag chains. Each hydrogen sulfate ion bridges two cations via pairs of N—H…O hydrogen bonds and vice versa, generating two R22(8) ring motifs (supramolecular heterosynthon). The cations also interact with one another via halogen–halogen (Br…Br) and halogen–oxygen (Br…O) interactions.  相似文献   

7.
The asymmetric unit of the title compound, C10H8O2, contains two practically planar symmetry‐independent molecules linked by one O—H...O hydrogen bond. Molecules are further linked into a three‐dimensional network, which is built from R66(36), R66(18), R66(30) and R44(26) rings formed by the combined effect of three O—H...O and one C—H...O hydrogen bond. This network is additionally stabilized by an O—H...π interaction.  相似文献   

8.
Tartronic acid forms a hydrogen‐bonded complex, C5H5NO·C3H4O5, (I), with 2‐pyridone, while it forms acid salts, namely 3‐hydroxy­pyridinium hydrogen tartronate, (II), and 4‐hy­droxy­pyridinium hydrogen tartronate, (III), both C5H6NO+·C3H3O5, with 3‐hydroxy­pyridine and 4‐hydroxy­pyridine, respectively. In (I), the pyridone mol­ecules and the acid mol­ecules form R(8) and R(10) hydrogen‐bonded rings, respectively, around the inversion centres. In (II) and (III), the cations and anions are linked by N—H⋯O and O—H⋯O hydrogen bonds to form a hydrogen‐bonded chain. In each of (I), (II) and (III), an intermolecular hydrogen bond is formed between a carboxyl group and the hydroxyl group attached to the central C atom, and in (I), the hydroxyl group participates in an intramolecular hydrogen bond with a carbonyl group. No intermolecular hydrogen bond is formed between the carboxyl groups in (I), or between the carboxyl and carboxyl­ate groups in (II) and (III).  相似文献   

9.
The three title compounds were obtained by reactions which mimic, with more extreme conditions, the in vivo metabolism of barbiturates. 1‐(2‐Cyclohex‐2‐enylpropionyl)‐3‐methylurea, C11H18N2O2, (I), and 2‐ethylpentanamide, C8H17NO, (III), both crystallize with two unique molecules in the asymmetric unit; in the case of (III), one unique molecule exhibits whole‐molecule disorder. 2‐Ethyl‐5‐methylhexanamide, C9H19NO, (II), crystallizes as a fully ordered molecule with Z′ = 1. In the crystal structures, three different hydrogen‐bonding motifs are observed: in (I) a combination of R22(4) and R22(8) motifs, and in (II) and (III) a combination of R42(8) and R22(8) motifs. In all three structures, one‐dimensional ribbons are formed by N—H...O hydrogen‐bonding interactions.  相似文献   

10.
In order to investigate the relative stability of N—H...O and N—H...S hydrogen bonds, we cocrystallized the antithyroid drug 6‐propyl‐2‐thiouracil with two complementary heterocycles. In the cocrystal pyrimidin‐2‐amine–6‐propyl‐2‐thiouracil (1/2), C4H5N3·2C7H10N2OS, (I), the `base pair' is connected by one N—H...S and one N—H...N hydrogen bond. Homodimers of 6‐propyl‐2‐thiouracil linked by two N—H...S hydrogen bonds are observed in the cocrystal N‐(6‐acetamidopyridin‐2‐yl)acetamide–6‐propyl‐2‐thiouracil (1/2), C9H11N3O2·2C7H10N2OS, (II). The crystal structure of 6‐propyl‐2‐thiouracil itself, C7H10N2OS, (III), is stabilized by pairwise N—H...O and N—H...S hydrogen bonds. In all three structures, N—H...S hydrogen bonds occur only within R22(8) patterns, whereas N—H...O hydrogen bonds tend to connect the homo‐ and heterodimers into extended networks. In agreement with related structures, the hydrogen‐bonding capability of C=O and C=S groups seems to be comparable.  相似文献   

11.
The structures of ammonium 3,5‐dinitrobenzoate, NH4+·C7H3N2O6, (I), ammonium 4‐nitrobenzoate dihydrate, NH4+·C7H4NO4·2H2O, (II), and ammonium 2,4‐dichlorobenzoate hemihydrate, NH4+·C7H3Cl2O2·0.5H2O, (III), have been determined and their hydrogen‐bonded structures are described. All three salts form hydrogen‐bonded polymeric structures, viz. three‐dimensional in (I) and two‐dimensional in (II) and (III). With (I), a primary cation–anion cyclic association is formed [graph set R43(10)] through N—H...O hydrogen bonds, involving a carboxylate group with both O atoms contributing to the hydrogen bonds (denoted O,O′‐carboxylate) on one side and a carboxylate group with one O atom involved in two hydrogen bonds (denoted O‐carboxylate) on the other. Structure extension involves N—H...O hydrogen bonds to both carboxylate and nitro O‐atom acceptors. With structure (II), the primary inter‐species interactions and structure extension into layers lying parallel to (001) are through conjoined cyclic hydrogen‐bonding motifs, viz.R43(10) (one cation, an O,O′‐carboxylate group and two water molecules) and centrosymmetric R42(8) (two cations and two water molecules). The structure of (III) also has conjoined R43(10) and centrosymmetric R42(8) motifs in the layered structure but these differ in that the first motif involves one cation, an O,O′‐carboxylate group, an O‐carboxylate group and one water molecule, and the second motif involves two cations and two O‐carboxylate groups. The layers lie parallel to (100). The structures of salt hydrates (II) and (III), displaying two‐dimensional layered arrays through conjoined hydrogen‐bonded nets, provide further illustration of a previously indicated trend among ammonium salts of carboxylic acids, but the anhydrous three‐dimensional structure of (I) is inconsistent with that trend.  相似文献   

12.
In the title compounds, C7H8NO2+·NO3, (I), C7H8NO2+·ClO4·H2O, (II), and 2C7H8NO2+·SO42−, (III), the carboxyl planes of the 4‐carboxy­phenyl­ammonium cations are twisted from the aromatic plane. A homonuclear C(8) hydrogen‐bonding motif of 4‐carboxy­phenyl­ammonium cations is observed in both (I) and (II), leading to `head‐to‐tail' layers. The cations in (III) form carboxyl group dimers, making a graph‐set motif of R22(8). In all the structures, anions connect the cationic layers and an infinite chain running along the c axis is observed, having the C22(6) graph‐set motif. Inter­estingly, in (II), the anions are connected through weak hydrogen bonds involving the water mol­ecules, leading to a graph‐set motif of R44(12). Alternate hydro­phobic and hydro­philic layers are observed in all three compounds as a result of the column‐like arrangement of the aromatic rings of the cations and the anions. Furthermore, in (I), head‐to‐tail N—H⋯O inter­actions and inter­actions linking the cations and anions form an R64(16) hydrogen‐bonding motif, resulting in a pseudo‐inversion centre at (, , 0).  相似文献   

13.
In order to study the preferred hydrogen‐bonding pattern of 6‐amino‐2‐thiouracil, C4H5N3OS, (I), crystallization experiments yielded five different pseudopolymorphs of (I), namely the dimethylformamide disolvate, C4H5N3OS·2C3H7NO, (Ia), the dimethylacetamide monosolvate, C4H5N3OS·C4H9NO, (Ib), the dimethylacetamide sesquisolvate, C4H5N3OS·1.5C4H9NO, (Ic), and two different 1‐methylpyrrolidin‐2‐one sesquisolvates, C4H5N3OS·1.5C5H9NO, (Id) and (Ie). All structures contain R21(6) N—H...O hydrogen‐bond motifs. In the latter four structures, additional R22(8) N—H...O hydrogen‐bond motifs are present stabilizing homodimers of (I). No type of hydrogen bond other than N—H...O is observed. According to a search of the Cambridge Structural Database, most 2‐thiouracil derivatives form homodimers stabilized by an R22(8) hydrogen‐bonding pattern, with (i) only N—H...O, (ii) only N—H...S or (iii) alternating pairs of N—H...O and N—H...S hydrogen bonds.  相似文献   

14.
The pyrazine ring in two N‐substituted quinoxaline derivatives, namely (E)‐2‐(2‐methoxybenzylidene)‐1,4‐di‐p‐tosyl‐1,2,3,4‐tetrahydroquinoxaline, C30H28N2S2O5, (II), and (E)‐methyl 2‐[(1,4‐di‐p‐tosyl‐1,2,3,4‐tetrahydroquinoxalin‐2‐ylidene)methyl]benzoate, C31H28N2S2O6, (III), assumes a half‐chair conformation and is shielded by the terminal tosyl groups. In the molecular packing of the compounds, intermolecular C—H...O hydrogen bonds between centrosymmetrically related molecules generate dimeric rings, viz. R22(22) in (II) and R22(26) in (III), which are further connected through C—H...π(arene) hydrogen bonds and π–π stacking interactions into novel supramolecular frameworks.  相似文献   

15.
In the title compounds, C6H7N2O+·ClO4, (I), and C6H7N2O+·C2HO4, (II), the carboxamide plane is twisted from the plane of the protonated pyridine ring. Lamellar or sheet‐like structural features are observed through N—H⋯O and O—H⋯O hydrogen‐bonded motifs of cations and anions in (I) and (II), respectively. These sheets are aggregated through C(4) and C(5) chain motifs in (I) and (II), respectively. R12(4) ring motifs in (I) and R12(5) motifs in (II) are formed via pyridine–anion bifurcated N—H⋯O inter­actions. In (II), carboxamide groups form N—H⋯O dimers around the inversion centres of the unit cell, with R22(8) ring motifs. A 21 screw‐related helical or ribbon‐like structure along the b axis is formed in (II) through carboxamide and pyridinium N—H⋯O hydrogen bonds with the oxalate anions.  相似文献   

16.
17.
The structures of two brucinium (2,3‐dimeth­oxy‐10‐oxostrychnidinium) salts of the α‐hydr­oxy acids l ‐malic acid and l ‐tartaric acid, namely brucinium hydrogen (S)‐malate penta­hydrate, C23H27N2O4+·C4H5O5·5H2O, (I), and anhydrous brucinium hydrogen (2R,3R)‐tartrate, C23H27N2O4+·C4H5O6,(II), have been determined at 130 K. Compound (I) has two brucinium cations, two hydrogen malate anions and ten water mol­ecules of solvation in the asymmetric unit, and forms an extensively hydrogen‐bonded three‐dimensional framework structure. In compound (II), the brucinium cations form the common undulating brucine sheet substructures, which accommodate parallel chains of head‐to‐tail hydrogen‐bonded tartrate anion species in the inter­stitial cavities.  相似文献   

18.
The title compounds, 2‐chloroanilinium dihydrogen phosphate (2CADHP) and 4‐chloroanilinium dihydrogen phosphate (4CADHP), both C6H7NCl+·H2PO4, form two‐dimensional supramolecular organic–inorganic hybrid frameworks. In 2CADHP, the dihydrogen phosphate anions form a double‐stranded anionic chain generated parallel to the [010] direction through O—H...O hydrogen bonds, whereas in 4CADHP they form a two‐dimensional supramolecular net extending parallel to the crystallographic (001) plane into which the cations are linked through strong N—H...O hydrogen bonds.  相似文献   

19.
The title compounds, p‐phenetidinium hydrogen phthalate (or 4‐ethoxyanilinium 2‐carboxybenzoate), C8H12NO+·C8H5O4, (I), and cyclohexylaminium hydrogen phthalate hemihydrate (or cyclohexylaminium 2‐carboxybenzoate hemihydrate), C6H14N+·C8H5O4·0.5H2O, (II), form two‐ and one‐dimensional supramolecular networks, respectively. In (I), the anionic–cationic network consists of R32(6) and R44(16) hydrogen‐bonded rings forming a two‐dimensional sheet along the (001) plane. In (II), O—H...O hydrogen bonds connect the glide‐related anions, generating a supramolecular chain running parallel to [001] to which the cations are linked to form one‐dimensional channels along [001]. The solvent water molecules, which reside on twofold axes, are trapped inside the molecular channels by N—H...O and O—H...O hydrogen bonds.  相似文献   

20.
In the title compounds, namely 3‐acetylanilinium bromide, C8H10NO+·Br, (I), 3‐acetylanilinium nitrate, C8H10NO+·NO3, (II), and 3‐acetylanilinium dihydrogen phosphate, C8H10NO+·H2PO4, (III), each asymmetric unit contains a discrete cation, with a protonated amino group, and an anion. In the crystal structure of (I), the ions are connected via N—H...Br and N—H...O hydrogen bonds into a chain of spiro‐fused R22(14) and R24(8) rings. In compound (II), the non‐H atoms of the cation all lie on a mirror plane in the space group Pnma, while the nitrate ion lies across a mirror plane. The crystal structures of compounds (II) and (III) are characterized by hydrogen‐bonded networks in two and three dimensions, respectively. The ions in (II) are connected via N—H...O hydrogen bonds, with three characteristic graph‐set motifs, viz.C22(6), R21(4) and R46(14). The ions in (III) are connected via N—H...O and O—H...O hydrogen bonds, with five characteristic graph‐set motifs, viz.D, C(4), C12(4), R33(10) and R44(12). The significance of this study lies in its illustration of the differences between the supramolecular aggregations in the bromide, nitrate and dihydrogen phosphate salts of a small organic molecule. The different geometry of the counter‐ions and their different potential for hydrogen‐bond formation result in markedly different hydrogen‐bonding arrangements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号