首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
L‐Cysteine hydrogen fluoride, or bis(L‐cysteinium) difluoride–L‐cysteine–hydrogen fluoride (1/1/1), 2C3H8NO2S+·2F·C3H7NO2S·HF or L‐Cys+(L‐Cys...L‐Cys+)F(F...H—F), provides the first example of a structure with cations of the `triglycine sulfate' type, i.e.A+(A...A+) (where A and A+ are the zwitterionic and cationic states of an amino acid, respectively), without a doubly charged counter‐ion. The salt crystallizes in the monoclinic system with the space group P21. The dimeric (L‐Cys...L‐Cys+) cation and the dimeric (F...H—F) anion are formed via strong O—H...O or F—H...F hydrogen bonds, respectively, with very short O...O [2.4438 (19) Å] and F...F distances [2.2676 (17) Å]. The F...F distance is significantly shorter than in solid hydrogen fluoride. Additionally, there is another very short hydrogen bond, of O—H...F type, formed by a L‐cysteinium cation and a fluoride ion. The corresponding O...F distance of 2.3412 (19) Å seems to be the shortest among O—H...F and F—H...O hydrogen bonds known to date. The single‐crystal X‐ray diffraction study was complemented by IR spectroscopy. Of special interest was the spectral region of vibrations related to the above‐mentioned hydrogen bonds.  相似文献   

2.
X‐ray studies reveal that tert‐butyl (6S)‐6‐iso­butyl‐2,4‐dioxo­piperidine‐1‐carboxyl­ate occurs in the 4‐enol form, viz. tert‐butyl (6S)‐4‐hydroxy‐6‐iso­butyl‐2‐oxo‐1,2,5,6‐tetra­hydropyri­dine‐1‐carboxyl­ate, C14H23NO4, when crystals are grown from a mixture of di­chloro­methane and pentane, and has an axial orientation of the iso­butyl side chain at the 6‐position of the piperidine ring. Reduction of the keto functionality leads predominantly to the corresponding β‐hydroxy­lated δ‐lactam, tert‐butyl (4R,6S)‐4‐hydroxy‐6‐iso­butyl‐2‐oxo­piperidine‐1‐car­boxyl­ate, C14H25NO4, with a cis configuration of the 4‐hydroxy and 6‐iso­butyl groups. The two compounds show similar molecular packing driven by strong O—H⋯O=C hydrogen bonds, leading to infinite chains in the crystal structure.  相似文献   

3.
The title compound, (5R,9R,13S,14S,17R)‐14‐hydroxy‐3‐methoxy‐17‐methyl‐4,5‐epoxymorphinan‐6‐one N‐oxide, C18H21NO5, has been prepared in a diastereomerically pure form by the reaction of oxycodone with 3‐chloroperbenzoic acid and subsequent crystallization of the product from chloroform. The crystal packing shows that the molecule exhibits intramolecular O—H...O [D...A = 2.482 (2) Å] hydrogen bonding. In addition, there are weak intermolecular C—H...O interactions which, along with van der Waals forces, stabilize the structure. The new chiral center at the 17‐position is demonstrated to be R.  相似文献   

4.
The two title chromene compounds, 3,3a‐dihydrocyclo­penta­[b]chromen‐1(2H)‐one, C16H12O2, (I), and 2‐(2‐hydroxy­benzyl­idene)‐3,3a‐dihydrocyclo­penta­[b]chromen‐1(2H)‐one, C19H14O3, (II), have been determined in the monoclinic space group P21/n. Compound (I) is mainly stabilized by C—H⋯π inter­actions. Compound (II) is linked into infinite one‐dimensional chains with a C(3) motif via inter­molecular O—H⋯O hydrogen bonds. The inter­molecular C—H⋯π and π–­π inter­actions also play key roles in stabilizing the crystal packing. Two intra­molecular C—H⋯O hydrogen bonds with S(5) motifs were detected in (II).  相似文献   

5.
The title zwitterion (2S)‐2‐azaniumyl‐1‐hydroxy‐3‐phenylpropan‐1‐olate, C9H11NO2, also known as L‐phenylalanine, was characterized using synchrotron X‐rays. It crystallized in the monoclinic space group P21 with four molecules in the asymmetric unit. The 0.62 Å resolution structure is assumed to be closely related to the fibrillar form of phenylalanine, as observed by electron microscopy and electron diffraction. The structure exists in a zwitterionic form in which π–π stacking and hydrogen‐bonding interactions are believed to form the basis of the self‐assembling properties.  相似文献   

6.
The absolute configuration of the title cis‐(1R,3R,4S)‐pyrrolidine–borane complex, C18H34BNO2Si, was confirmed. Together with the related trans isomers (3S,4S) and (3R,4R), it was obtained unexpectedly from the BH3·SMe2 reduction of the corresponding chiral (3R,4R)‐lactam precursor. The phenyl ring is disordered over two conformations in the ratio 0.65:0.35. The crystallographic packing is dominated by the rarely found donor–acceptor hydroxy–borane O—H...H—B hydrogen bonds.  相似文献   

7.
The title salt, methyl (1R,2R,3S,5S,8S)‐3‐benzoyl­oxy‐8‐methyl‐8‐aza­bicyclo­[3.2.1]octane‐2‐carboxyl­ate tetra­chloro­aurate(III), (C17H22NO4)[AuCl4], has its protonated N atom intra­molecularly hydrogen bonded to the O atom of the methoxy­carbonyl group [N⋯O = 2.755 (6) Å and N—H⋯O = 136°]. Two close inter­molecular C—H⋯O contacts exist, as well as five C—H⋯Cl close contacts. The [AuCl4] anion was found to be distorted square planar.  相似文献   

8.
The sodium salt of [immucillin‐A–CO2H] (Imm‐A), namely catena‐poly[[[triaquadisodium(I)](μ‐aqua)[μ‐(1S)‐N‐carboxylato‐1‐(9‐deazaadenin‐9‐yl)‐1,4‐dideoxy‐1,4‐imino‐d ‐ribitol][triaquadisodium(I)][μ‐(1S)‐N‐carboxylato‐1‐(9‐deazaadenin‐9‐yl)‐1,4‐dideoxy‐1,4‐imino‐d ‐ribitol]] tetrahydrate], {[Na2(C12H13N4O6)2(H2O)7]·4H2O}n, (I), forms a polymeric chain via Na+—O interactions involving the carboxylate and keto O atoms of two independent Imm‐A molecules. Extensive N,O—H...O hydrogen bonding utilizing all water H atoms, including four waters of crystallization, provides crystal packing. The structural definition of this novel compound was made possible through the use of synchrotron radiation utilizing a minute fragment (volume ∼2.4 × 10−5 mm−3) on a beamline optimized for protein data collection. A summary of intra‐ring conformations for immucillin structures indicates considerable flexibility while retaining similar intra‐ring orientations.  相似文献   

9.
The title compounds, C12H13NO4, are derived from l ‐threonine and dl ‐threonine, respectively. Hydro­gen bonding in the chiral derivative, (2S/3R)‐3‐hydroxy‐2‐(1‐oxoisoindolin‐2‐yl)­butanoic acid, consists of O—Hacid?Oalkyl—H?O=Cindole chains [O?O 2.659 (3) and 2.718 (3) Å], Csp3—H?O and three C—H?πarene interactions. In the (2R,3S/2S,3R) racemate, conventional carboxylic acid hydrogen bonding as cyclical (O—H?O=C)2 [graph set R22(8)] is present, with Oalkyl—H?O=Cindole, Csp3—H?O and C—H?πarene interactions. The COOH group geometry differs between the two forms, with C—O, C=O, C—C—O and C—C=O bond lengths and angles of 1.322 (3) and 1.193 (3) Å, and 109.7 (2) and 125.4 (3)°, respectively, in the chiral structure, and 1.2961 (17) and 1.2210 (18) Å, and 113.29 (12) and 122.63 (13)°, respectively, in the racemate structure. The O—C=O angles of 124.9 (3) and 124.05 (14)° are similar. The differences arise from the contrasting COOH hydrogen‐bonding environments in the two structures.  相似文献   

10.
The title compounds, C8H11NO, (I), and 2C8H12NO+·C4H4O42−, (II), both crystallize in the monoclinic space group P21/c. In the crystal structure of (I), intermolecular O—H...N hydrogen bonds combine the molecules into polymeric chains extending along the c axis. The chains are linked by C—H...π interactions between the methylene H atoms and the pyridine rings into polymeric layers parallel to the ac plane. In the crystal structure of (II), the succinate anion lies on an inversion centre. Its carboxylate groups interact with the 2‐ethyl‐3‐hydroxy‐6‐methylpyridinium cations via intermolecular N—H...O hydrogen bonds with the pyridine ring H atoms and O—H...O hydrogen bonds with the hydroxy H atoms to form polymeric chains, which extend along the [01] direction and comprise R44(18) hydrogen‐bonded ring motifs. These chains are linked to form a three‐dimensional network through nonclassical C—H...O hydrogen bonds between the pyridine ring H atoms and the hydroxy‐group O atoms of neighbouring cations. π–π interactions between the pyridine rings and C—H...π interactions between the methylene H atoms of the succinate anion and the pyridine rings are also present in this network.  相似文献   

11.
The title compounds, 2‐{[tris­(hydroxy­methyl)­methyl]­amino­methyl­ene}cyclo­hexa‐3,5‐dien‐1(2H)‐one, C11H15NO4, (I), 6‐hydroxy‐2‐{[tris­(hydroxy­methyl)­methyl]­amino­methyl­ene}­cyclo­hexa‐3,5‐dien‐1(2H)‐one, C11H15NO5, (II), and 6‐methoxy‐2‐{[tris­(hydroxy­methyl)­methyl]­amino­methyl­ene}­cyclo­hexa‐3,5‐dien‐1(2H)‐one, C12H17NO5, (III), adopt the keto–amine tautomeric form, with the formal hydroxy H atom located on the N atom, and the NH group and oxo O atom display a strong intramolecular N—H⋯O hydrogen bond. The N—H⋯O hydrogen‐bonded rings are almost planar and coupled with the cyclo­hexa­diene rings. The carbonyl O atoms accept two other H atoms from the alcohol groups of adjacent mol­ecules in (I), and one from the alcohol and one from the phenol group in (II), but from only one alcohol H atom in (III).  相似文献   

12.
The title dipeptide {systematic name: (S)‐2‐[(S)‐2‐azaniumylbutanamido]‐3‐hydroxypropanoate}, C7H14N2O4, was synthesized in the anticipation that it would form nanoporous crystals with hexagonal symmetry. Single‐crystal X‐ray diffraction analysis showed that it had instead adopted a unit cell in the space group I4, similar to L‐alanyl‐L‐alanine [Fletterick, Tsai & Hughes (1970). J. Phys. Chem. 75 , 918–922]. The resulting packing arrangement has a high density for a peptide (1.462 Mg m−3), which is rendered possible by extensive disorder over two positions for the ethyl side chain of the 2‐aminobutyric acid fragment and over three positions for the serine side chain.<!?tpb=17.5pt>  相似文献   

13.
The title compound, 2C14H13N2+·S2O82−·2H2O, is a protonated amine salt which is formed from two rather uncommon ionic species, namely a peroxodisulfate (pds2−) anion, which lies across a crystallographic inversion centre, and a 2,9‐dimethyl‐1,10‐phenanthrolin‐1‐ium (Hdmph+) cation lying in a general position. Each pds2− anion binds to two water molecules through strong water–peroxo O—H...O interactions, giving rise to an unprecedented planar network of hydrogen‐bonded macrocycles which run parallel to (100). The atoms of the large R88(30) rings are provided by four water molecules bridging in fully extended form (...H—O—H...) and four pds2− anions alternately acting as long (...O—S—O—O—S—O...) and short (...O—S—O...) bridges. The Hdmph+ cations, in turn, bind to these units through hydrogen bonds involving their protonated N atoms. In addition, the crystal structure also contains π–π and aromatic–peroxo C—H...O interactions.  相似文献   

14.
Crystals of the title compound, 2C3H7N6+·C10H6O6S22−·C3H6N6·5H2O, are built up of neutral 2,4,6‐triamino‐1,3,5‐triazine (melamine), singly protonated melaminium cations, naphthalene‐1,5‐disulfonate dianions and water molecules. Two independent anions lie across centres of inversion in the space group P. The melamine molecules are connected by N—H...N hydrogen bonds into two different one‐dimensional polymers almost parallel to the (010) plane, forming a stacking structure along the b axis. The centrosymmetric naphthalene‐1,5‐disulfonate anions interact with water molecules via O—H...O hydrogen bonds, forming layers parallel to the (001) plane. The cations and anions are connected by N—H...O and O—H...N hydrogen bonds to form a three‐dimensional supramolecular framework.  相似文献   

15.
(2S,3S)‐2,6‐Dimethylheptane‐1,3‐diol, C9H20O2, (I), was synthesized from the ketone (R)‐4‐benzyl‐3‐[(2R,3S)‐3‐hydroxy‐2,6‐dimethylheptanoyl]‐1,3‐oxazolidin‐2‐one, C19H27NO4, (II), containing C atoms of known chirality. In both structures, strong hydrogen bonds between the hydroxy groups form tape motifs. The contribution from weaker C—H...O hydrogen bonds is much more evident in the structure of (II), which furthermore contains an example of a direct short Osp3...Csp2 contact that represents a usually unrecognized type of intermolecular interaction.  相似文献   

16.
The title compounds, C11H11BrO3, (I), and C11H11NO5, (II), respectively, are derivatives of 6‐hydroxy‐5,7,8‐trimethylchroman‐2‐one substituted at the 5‐position by a Br atom in (I) and by a nitro group in (II). The pyranone rings in both molecules adopt half‐chair conformations, and intramolecular O—H...Br [in (I)] and O—H...Onitro [in (II)] hydrogen bonds affect the dispositions of the hydroxy groups. Classical intermolecular O—H...O hydrogen bonds are found in both molecules but play quite dissimilar roles in the crystal structures. In (I), O—H...O hydrogen bonds form zigzag C(9) chains of molecules along the a axis. Because of the tetragonal symmetry, similar chains also form along b. In (II), however, similar contacts involving an O atom of the nitro group form inversion dimers and generate R22(12) rings. These also result in a close intermolecular O...O contact of 2.686 (4) Å. For (I), four additional C—H...O hydrogen bonds combine with π–π stacking interactions between the benzene rings to build an extensive three‐dimensional network with molecules stacked along the c axis. The packing in (II) is much simpler and centres on the inversion dimers formed through O—H...O contacts. These dimers are stacked through additional C—H...O hydrogen bonds, and further weak C—H...O interactions generate a three‐dimensional network of dimer stacks.  相似文献   

17.
The crystal structures of the proton‐transfer compounds of ferron (8‐hydroxy‐7‐iodoquinoline‐5‐sulfonic acid) with 4‐chloroaniline and 4‐bromoaniline, namely 4‐chloroanilinium 8‐hydroxy‐7‐iodoquinoline‐5‐sulfonate monohydrate, C6H7ClN+·C9H5INO4S·H2O, and 4‐bromoanilinium 8‐hydroxy‐7‐iodoquinoline‐5‐sulfonate monohydrate, C6H7BrN+·C9H5INO4S·H2O, have been determined. The compounds are isomorphous and comprise sheets of hydrogen‐bonded cations, anions and water molecules which are extended into a three‐dimensional framework structure through centrosymmetric R22(10) O—H...N hydrogen‐bonded ferron dimer interactions.  相似文献   

18.
In the racemic crystals of (1S,2R)‐ or (1R,2S)‐1‐[N‐(chloro­acetyl)­carbamoyl­amino]‐2,3‐di­hydro‐1H‐inden‐2‐yl chloro­acetate, C14H14Cl2N2O4, (I), the enantiomeric mol­ecules form a dimeric structure via the N—H?O cyclic hydrogen bond of the carbamoyl moieties. In the chiral crystals of (—)‐(1S,2R)‐1‐[N‐(chloro­acetyl)­carbamoyl­amino]‐2,3‐di­hydro‐1H‐inden‐2‐yl chloro­acetate, C14H14Cl2N2O4, (II), the N—­H?O intermolecular hydrogen bond forms a zigzag chain around the twofold screw axis. The melting points and calculated densities of (I) and (II) are 446 and 396 K, and 1.481 and 1.445 Mg m?3, respectively.  相似文献   

19.
Reaction between cysteamine (systematic name: 2‐aminoethanethiol, C2H7NS) and L‐(+)‐tartaric acid [systematic name: (2R,3R)‐2,3‐dihydroxybutanedioic acid, C4H6O6] results in a mixture of cysteamine tartrate(1−) monohydrate, C2H8NS+·C4H5O6·H2O, (I), and cystamine bis[tartrate(1−)] dihydrate, C4H14N2S22+·2C4H5O6·2H2O, (III). Cystamine [systematic name: 2,2′‐dithiobis(ethylamine), C4H12N2S2], reacts with L‐(+)‐tartaric acid to produce a mixture of cystamine tartrate(2−), C4H14N2S22+·C4H4O62−, (II), and (III). In each crystal structure, the anions are linked by O—H...O hydrogen bonds that run parallel to the a axis. In addition, hydrogen bonding involving protonated amino groups in all three salts, and water molecules in (I) and (III), leads to extensive three‐dimensional hydrogen‐bonding networks. All three salts crystallize in the orthorhombic space group P212121.  相似文献   

20.
The title compound [systematic name: 7‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐7H‐imidazo[1,2‐c]pyrrolo[2,3‐d]pyrimidine hemihydrate], 2C13H14N4O3·H2O or (I)·0.5H2O, shows two similar conformations in the asymmetric unit. These two conformers are connected through one water molecule by hydrogen bonds. The N‐glycosylic bonds of both conformers show an almost identical anti conformation with χ = −107.7 (2)° for conformer (I‐1) and −107.0 (2)° for conformer (I‐2). The sugar moiety adopts an unusual N‐type (C3′‐endo) sugar pucker for 2′‐deoxyribonucleosides, with P = 36.8 (2)° and τm = 40.6 (1)° for conformer (I‐1), and P = 34.5 (2)° and τm = 41.4 (1)° for conformer (I‐2). Both conformers and the solvent molecule participate in the formation of a three‐dimensional pattern with a `chain'‐like arrangement of the conformers. The structure is stabilized by intermolecular O—H...O and O—H...N hydrogen bonds, together with weak C—H...O contacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号