首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The bifunctional pyridine‐2,3‐dicarboxylic acid (H2pdc) ligand has one N atom and four O atoms, which could bind more than one AgI centre with diverse binding modes. A novel infinite one‐dimensional AgI coordination polymer, namely catena‐poly[[silver(I)‐(μ2‐pyridine‐2,3‐dicarboxylato‐κ2N :O 3)‐silver(I)‐tris(μ2‐5‐methyl‐1,3,4‐thiodiazol‐2‐amine‐κ2N :N ′)] monohydrate ethanol monosolvate], {[Ag2(C7H3NO4)(C3H5N3S)3]·H2O·C2H5OH}n , has been synthesized using H2pdc and 5‐methyl‐1,3,4‐thiadiazol‐2‐amine (tda), and characterized by single‐crystal X‐ray diffraction. One AgI atom is located in a four‐coordinated AgN4 tetrahedral geometry and the other AgI atom is in a tetrahedral AgN3O geometry. A dinuclear AgI cluster formed by three tda ligands with a paddelwheel configuration is bridged by the dianionic pdc2− ligand into a one‐dimensional coordination polymer. Interchain N—H…O hydrogen bonds extend the one‐dimensional chains into an undulating two‐dimensional sheet. The sheets are further packed into a three‐dimensional supramolecular framework by interchain N—H…O hydrogen bonds.  相似文献   

2.
One of most interesting systems of coordination polymers constructed from the first‐row transition metals is the porous ZnII coordination polymer system, but the numbers of such polymers containing N‐donor linkers are still limited. The title double‐chain‐like ZnII coordination polymer, [Ag2Zn(CN)4(C10H10N2)2]n, presents a one‐dimensional linear coordination polymer structure in which ZnII ions are linked by bridging anionic dicyanidoargentate(I) units along the crystallographic b axis and each ZnII ion is additionally coordinated by a terminal dicyanidoargentate(I) unit and two terminal 1‐benzyl‐1H‐imidazole (BZI) ligands, giving a five‐coordinated ZnII ion. Interestingly, there are strong intermolecular AgI…AgI interactions between terminal and bridging dicyanidoargentate(I) units and C—H…π interactions between the phenyl rings of BZI ligands of adjacent one‐dimensional linear chains, providing a one‐dimensional linear double‐chain‐like structure. The supramolecular three‐dimensional framework is stabilized by C—H…π interactions between the phenyl rings of BZI ligands and by AgI…AgI interactions between adjacent double chains. The photoluminescence properties have been studied.  相似文献   

3.
The three‐dimensional coordination polymer poly[[bis(μ3‐2‐aminoacetato)di‐μ‐aqua‐μ3‐(naphthalene‐1,5‐disulfonato)‐hexasilver(I)] dihydrate], {[Ag6(C10H6O6S2)(C2H4NO2)4(H2O)2]·2H2O}n, based on mixed naphthalene‐1,5‐disulfonate (L1) and 2‐aminoacetate (L2) ligands, contains two AgI centres (Ag1 and Ag4) in general positions, and another two (Ag2 and Ag3) on inversion centres. Ag1 is five‐coordinated by three O atoms from one L1 anion, one L2 anion and one water molecule, one N atom from one L2 anion and one AgI cation in a distorted trigonal–bipyramidal coordination geometry. Ag2 is surrounded by four O atoms from two L2 anions and two water molecules, and two AgI cations in a slightly octahedral coordination geometry. Ag3 is four‐coordinated by two O atoms from two L2 anions and two AgI cations in a slightly distorted square geometry, while Ag4 is also four‐coordinated by two O atoms from one L1 and one L2 ligand, one N atom from another L2 anion, and one AgI cation, exhibiting a distorted tetrahedral coordination geometry. In the crystal structure, there are two one‐dimensional chains nearly perpendicular to one another (interchain angle = 87.0°). The chains are connected by water molecules to give a two‐dimensional layer, and the layers are further bridged by L1 anions to generate a novel three‐dimensional framework. Moreover, hydrogen‐bonding interactions consolidate the network.  相似文献   

4.
The title compound, {[Ag(C4H6NO4)(C4H5N3)]·H2O}n, was synthesized by the reaction of silver(I) nitrate with 2‐aminopyrimidine and iminodiacetic acid. X‐ray analysis reveals that the crystal structure contains a one‐dimensional ladder‐like AgI coordination polymer and that N—H...O and O—H...O hydrogen bonding results in a three‐dimensional network. The AgI centre is four‐coordinated by three N atoms from three different 2‐aminopyrimidine ligands and one O atom from one iminodiacetate ligand. Comparison of the structural features with previous findings suggests that the existence of a second ligand plays an important role in the construction of such polymer frameworks.  相似文献   

5.
The structure of the title compound, poly[[[μ3N′‐(3‐cyanobenzylidene)nicotinohydrazide]silver(I)] hexafluoroarsenate], {[Ag(C14H10N4O)](AsF6)}n, at 173 K exhibits a novel stair‐like two‐dimensional layer and a three‐dimensional supramolecular framework through C—H...Ag hydrogen bonds. The AgI cation is coordinated by three N atoms and one O atom from N′‐(3‐cyanobenzylidene)nicotinohydrazide (L) ligands, resulting in a distorted tetrahedral coordination geometry. The organic ligand acts as a μ3‐bridging ligand through the pyridyl and carbonitrile N atoms and deviates from planarity in order to adapt to the coordination geometry. Two ligands bridge two AgI cations to construct a small 2+2 Ag2L2 ring. Four ligands bridge one AgI cation from each of four of these small rings to form a large grid. An interesting stair‐like two‐dimensional (3,6)‐net is formed through AgI metal centres acting as three‐connection nodes and through L molecules as tri‐linkage spacers.  相似文献   

6.
In the organometallic silver(I) supramolecular complex poly[[silver(I)‐μ3‐3‐[4‐(2‐thienyl)‐2H‐cyclopenta[d]pyridazin‐1‐yl]benzonitrile] perchlorate methanol solvate], {[Ag(C18H11N3S)](ClO4)·CH3OH}n, there is only one type of AgI center, which lies in an {AgN2Sπ} coordination environment. Two unsymmetric multidentate 3‐[4‐(2‐thienyl)‐2H‐cyclopenta[d]pyridazin‐1‐yl]benzonitrile (L) ligands link two AgI atoms through π–AgI interactions into an organometallic box‐like unit, from which two 3‐cyanobenzoyl arms stretch out in opposite directions and bind two AgI atoms from neighboring box‐like building blocks. This results in a novel two‐dimensional network extending in the crystallographic bc plane. These two‐dimensional sheets stack together along the crystallographic a axis to generate parallelogram‐like channels. The methanol solvent molecules and the perchlorate counter‐ions are located in the channels, where they are fixed by intermolecular hydrogen‐bonding interactions. This architecture may provide opportunities for host–guest chemistry, such as guest molecule loss and absorption or ion exchange. The new fulvene‐type multidentate ligand L is a good candidate for the preparation of Cp–AgI‐containing (Cp is cyclopentadienyl) organometallic coordination polymers or supramolecular complexes.  相似文献   

7.
Yellow needle‐shaped crystals of the title compound, {[Ag(C30H22N4)][Ag(NO3)2]}n, were obtained by the reaction of AgNO3 and 9,10‐bis(benzimidazol‐1‐ylmethyl)anthracene (L) in a 2:1 ratio. The asymmetric unit consists of two AgI cations, one half L ligand and one nitrate anion. One AgI cation occupies a crystallographic inversion centre and links two N‐atom donors of two distinct L ligands to form an infinite one‐dimensional coordination polymer. The second AgI cation lies on a crystallographic twofold axis and is coordinated by two O‐atom donors of two nitrate anions to form an [Ag(NO3)2] counter‐ion. The polymeric chains are linked into a supramolecular framework via weak Ag...O [3.124 (5) Å] and Ag...π (2.982 Å) interactions (π is the centroid of an outer anthracene benzene ring). The π interactions contain two short Ag...C contacts [2.727 (6) and 2.765 (6) Å], which can be considered to define Ag–η2‐anthracene bonding interactions. In comparison with a previously reported binuclear AgI complex [Du, Hu, Zhang, Zeng & Bu (2008). CrystEngComm, 10 , 1866–1874], this new one‐dimensional coordination polymer was obtained by changing the metal–ligand ratio during the synthesis.  相似文献   

8.
The title coordination polymer, {[Ag(C8H7O5)]·H2O}n, is built from Ag+ cations and singly protonated dehydronorcantharidin (SP‐DNC) anions, with a distorted trigonal‐planar geometry at the metal centre. The coordination number of AgI is three (with one Ag—π bond and two Ag—O bonds, one from each of three different SP‐DNC ligands), if only formal Ag–ligand bonds are considered, but can be regarded as five if longer weak Ag...O interactions are also included. The two‐dimensional corrugated‐sheet coordination polymer forms a non‐interpenetrating framework with (4.82) topology. Disordered water molecules are sandwiched between the sheets.  相似文献   

9.
A novel two‐dimensional coordination polymer, poly[[μ2‐1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)propane]di‐μ4‐iodido‐di‐μ3‐iodido‐silver(I)], [Ag4I4(C11H16N4)]n, (I), has been synthesized by solvothermal reaction of AgNO3, KI and 1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)propane (bmimp). In (I), the two unique AgI cations have AgNI3 and AgI4 four‐coordinated tetrahedral geometries. The bmimp ligand has imposed twofold symmetry. The AgI cations and iodide anions form a unique one‐dimensional polymeric column motif incorporating [Ag6I6] hexagonal prisms, which are then connected by bmimp ligands to form two‐dimensional organic–inorganic layers. The layers are arranged in parallel in an ABAB fashion and are packed into the resultant three‐dimensional supramolecular framework by van der Waals interactions.  相似文献   

10.
The title compound, [Ag(C6H4N3O3)]n or [Ag(pyzca)]n (where pyzca is 3‐aminocarbonylpyrazine‐2‐carboxylate), (I), was obtained by silver‐catalysed partial hydrolysis of pyrazine‐2,3‐dicarbonitrile in aqueous solution. The compound has a distorted trigonal–planar coordination geometry around the AgI ion, with each ligand bridging three AgI ions to form a one‐dimensional strand of molecules parallel to the b axis. An extensive hydrogen‐bond pattern connects these strands to form a three‐dimensional network of mog topology.  相似文献   

11.
The title compound, {[Ag2(C10H14N4)2](ClO4)2}n, is a one‐dimensional coordination polymer formed by AgI atoms linearly bridged by 1,1′‐(butane‐1,4‐diyl)diimidazole molecules. The chains have a helical arrangement and pairs of chains are held together by the rarely reported ligand‐unsupported Ag—Ag interaction [2.966 (1) Å], which results in a double‐helix structure. The double helix contains twisted 24‐membered metallomacrocycles, which are composed of four Ag atoms and two ligands. The Ag atoms lie on twofold axes.  相似文献   

12.
The title compound, poly[[μ4‐5‐carboxy‐4‐carboxylato‐2‐(pyridin‐4‐yl)‐1H‐imidazol‐1‐ido]disilver(I)], [Ag2(C10H5N3O4)]n, was synthesized by reacting silver nitrate with 2‐(pyridin‐4‐yl)‐1H‐imidazole‐4,5‐dicarboxylic acid (H3PyIDC) under hydrothermal conditions. The asymmetric unit contains two crystallographically independent AgI cations and one unique HPyIDC2− anion. Both AgI cations are three‐coordinated in distorted T‐shaped coordination geometries. One AgI cation is coordinated by one N and two O atoms from two HPyIDC2− anions, while the other is bonded to one O and two N atoms from two HPyIDC2− anions. It is interesting to note that the HPyIDC2− group acts as a μ4‐bridging ligand to link the AgI cations into a three‐dimensional framework, which can be simplified as a diamondoid topology. The thermal stability and photoluminescent properties of the title compound have also been studied.  相似文献   

13.
2‐Aminopyrimidine (L1) and 2‐amino‐4,6‐dimethylpyrimidine (L2) have been used to create the two novel title complexes, [Ag2(NCS)2(C4H5N3)]n, (I), and [Ag(NCS)(C6H9N3)]n, (II). The structures of complexes (I) and (II) are mainly directed by the steric properties of the ligands. In (I), the L1 ligand is bisected by a twofold rotation axis running through the amine N atom and opposite C atoms of the pyrimidine ring. The thiocyanate anion adopts the rare μ3‐κ3S coordination mode to link three tetrahedrally coordinated AgI ions into a two‐dimensional honeycomb‐like 63 net. The L1 ligands further extend the two‐dimensional sheet to form a three‐dimensional framework by bridging AgI ions in adjacent layers. In (II), with three formula units in the asymmetric unit, the L2 ligand bonds to a single AgI ion in a monodentate fashion, while the thiocyanate anions adopt a μ3‐κ1N2S coordination mode to link the AgL2 subunits to form two‐dimensional sheets. These layers are linked by N—H...N hydrogen bonds between the noncoordinated amino H atoms and both thiocyanate and pyrimidine N atoms.  相似文献   

14.
The solution reaction of AgNO3 and 2‐aminopyrazine (apyz) in a 1:1 ratio gives rise to the title compound, [Ag2(NO3)2(C4H5N3)2]n, (I), which possesses a chiral crystal structure. In (I), both of the crystallographically independent AgI cations are coordinated in tetrahedral geometries by two N atoms from two apyz ligands and two O atoms from nitrate anions; however, the AgI centers show two different coordination environments in which one is coordinated by two O atoms from two different symmetry‐related nitrate anions and the second is coordinated by two O atoms from a single nitrate anion. The crystal structure consists of one‐dimensional AgI–apyz chains, which are further extended by μ2‐κ2O:O nitrate anions into a two‐dimensional (4,4) sheet. N—H...O and Capyz—H...O hydrogen bonds connect neighboring sheets to form a three‐dimensional supramolecular framework.  相似文献   

15.
The title compound, [Ag(C15H11N4O2S)]n, was synthesized by the reaction of 4‐{[(1‐phenyl‐1H‐tetrazol‐5‐yl)sulfanyl]methyl}benzoic acid (Hptmba) with silver nitrate and triethylamine at room temperature. The asymmetric unit contains one crystallographically independent AgI cation and one ptmba ligand. Each AgI cation is tricoordinated by two carboxylate O atoms and one tetrazole N atom from three different ptmba ligands, displaying a distorted T‐shaped geometry. Three AgI cations are linked by tris‐monodentate bridging ptmba ligands to form a one‐dimensional double chain along the c axis, which is further consolidated by an intrachain π–π contact with an offset face‐to‐face distance of 4.176 (3) Å between the centroids of two adjacent aromatic rings in neighbouring benzoate groups. The one‐dimensional chains are linked into a three‐dimensional supramolecular framework by additional π–π interchain interactions, viz. of 3.753 (3) Å between two phenyl substituents of the tetrazole rings and of 4.326 (2) Å between a benzoate ring and a tetrazole ring. Thermogravimetric analysis and the fluorescence spectrum of the title compound reveal its good thermal stability and a strong green luminescence at room temperature.  相似文献   

16.
A one‐dimensional AgI coordination complex, catena‐poly[[silver(I)‐μ‐{2‐[2‐(pyridin‐4‐yl)‐1H‐benzimidazol‐1‐ylmethyl]phenol‐κ2N2:N3}] perchlorate monohydrate], {[Ag(C19H15N3O)]ClO4·H2O}n, was synthesized by the reaction of 2‐[2‐(pyridin‐4‐yl)‐1H‐benzimidazol‐1‐ylmethyl]phenol (L) with silver perchlorate. In the complex, the L ligands are arranged alternately and link AgI cations through one benzimidazole N atom and the N atom of the pyridine ring, leading to an extended zigzag chain structure. In addition, the one‐dimensional chains are extended into a three‐dimensional supramolecular architecture via O—H...O hydrogen‐bond interactions and π–π stacking interactions. The complex exhibits photoluminescence in acetonitrile solution, with an emission maximum at 390 nm, and investigation of the thermal stability reveals that the network structure is stable up to 650 K.  相似文献   

17.
The title complex, [Ag(C5H4NO)(C5H5NO)]n, consists of a polymeric neutral chain involving both a neutral pyridin‐4‐ol ligand and a deprotonated pyridin‐4‐olate monoanion. The AgI atom shows a T‐shaped coordination geometry, defined by one N atom of the pyridin‐4‐ol and one O and one N atom of two independent pyridin‐4‐olate bridges; the N—Ag—N moiety is approximately linear. The polymeric chains are connected via strong O—H⋯O hydrogen bonds and offset π–π interactions into a three‐dimensional network.  相似文献   

18.
The design and synthesis of metal coordination and supramolecular frameworks containing N‐donor ligands and dicyanidoargentate units is of interest due to their potential applications in the fields of molecular magnetism, catalysis, nonlinear optics and luminescence. In the design and synthesis of extended frameworks, supramolecular interactions, such as hydrogen bonding, π–π stacking and van der Waals interactions, have been exploited for molecular recognition associated with biological activity and for the engineering of molecular solids.The title compound, [Ag(CN)(C12H12N2)]n, crystallizes with the AgI cation on a twofold axis, half a cyanide ligand disordered about a centre of inversion and half a twofold‐symmetric 5,5′‐dimethyl‐2,2′‐bipyridine (5,5′‐dmbpy) ligand in the asymmetric unit. Each AgI cation exhibits a distorted tetrahedral geometry; the coordination environment comprises one C(N) atom and one N(C) atom from substitutionally disordered cyanide bridging ligands, and two N atoms from a bidentate chelating 5,5′‐dmbpy ligand. The cyanide ligand links adjacent AgI cations to generate a one‐dimensional zigzag chain. These chains are linked together via weak nonclassical intermolecular interactions, generating a two‐dimensional supramolecular network.  相似文献   

19.
In the title coordination polymer, [Cd2(SO4)2(C13H8N4)(H2O)2]n, there are two crystallographically independent CdII centres with different coordination geometries. The first CdII centre is hexacoordinated by four O atoms of four sulfate ligands, one water O atom and one N atom of a 1H‐imidazo[4,5‐f][1,10]phenanthroline (IP) ligand, giving a distorted octahedral coordination environment. The second CdII centre is heptacoordinated by four O atoms of three sulfate ligands, one water O atom and two N atoms of one chelating IP ligand, resulting in a distorted monocapped anti‐trigonal prismatic geometry. The symmetry‐independent CdII ions are bridged in an alternating fashion by sulfate ligands, forming one‐dimensional ladder‐like chains which are connected through the IP ligands to form two‐dimensional layers. These two‐dimensional layers are linked by interlayer hydrogen bonds, leading to the formation of a three‐dimensional supramolecular network.  相似文献   

20.
In the title three‐dimensional tetrazolate‐based coordination polymer, poly[bis(μ3‐cyanido‐κ3N:C:C)[μ5‐5‐(pyridin‐4‐yl)tetrazolato‐κ5N:N′:N′′:N′′′:N′′′′]tricopper(I)], [Cu3(C6H4N5)(CN)2]n, there are two types of coordinated CuI atoms. One type exhibits a tetrahedral environment and the other, residing on a twofold axis, adopts a trigonal coordination environment. The closest Cu...Cu distance is only 2.531 (2) Å, involving a bridging cyanide C atom. All four tetrazolate and the pyridine N atom of the 4‐(pyridin‐4‐yl)‐1H‐tetrazolate anion are coordinated to these CuI atoms and exhibit a μ5‐bridging mode. The three‐dimensional coordination network can be topologically simplified as a rarely observed (3,3,4,5)‐connected network with the Schläfli symbol (4.6.84)2.(42.6.87).(6.82)3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号