首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single crystals of the Ba-containing silicon clathrate superconductor Ba(7.76)Si(46) were prepared using a high-pressure and high-temperature condition (3 GPa, 1300 degrees C). It crystallized in the cubic space group Pm-3n with a = 10.3141(7) A and Z = 1. There are two crystallographically different types of Ba sites, at the centers of Si dodecahederal (Ba@Si(20)) and Si tetrakaidecahedral (Ba@Si(24)) cages. On evacuation at 527 degrees C, a part of Ba atoms were removed from the Ba@Si(20) sites. The superconducting transition temperature (T(c)) decreased from 9.0 to 6.0 K with the decrease of the Ba content from 7.76 to 6.63 Ba/Si(46). The Ba deficient sites and the deficiency were determined by the structural refinement in the single-crystal X-ray analyses.  相似文献   

2.
The Rare Earth Metal Polyselenides Gd8Se15, Tb8Se15?x, Dy8Se15?x, Ho8Se15?x, Er8Se15?x, and Y8Se15?x – Increasing Disorder in Defective Planar Selenium Layers Single crystals of the rare earth metal polyselenides Gd8Se15, Tb8Se15?x, Dy8Se15?x, Ho8Se15?x, Er8Se15?x, and Y8Se15?x (0 < x ≤ 0.3) have been prepared by chemical transport reactions (1120 K→ 970 K, 14 days, I2 as carrier) starting from pre‐annealed powders of nominal compositions between LnSe2 and LnSe1.9. The isostructural title compounds adopt a 3 × 4 × 2 superstructure of the ZrSSi type and can be described in space group Amm2 with lattice parameters of a = 12.161(1) Å, b = 16.212(2) Å and c = 16.631(2) Å (Gd8Se15), a = 12.094(2) Å, b = 16.123(2) Å and c = 16.550(2) Å (Tb8Se15?x), a = 12.036(2) Å, b = 16.060(2) Å and c = 16.475(2) Å (Dy8Se15?x), a = 11.993(2) Å, b = 15.999(2) Å and c = 16.471(2) Å (Ho8Se15?x), a = 11.908(2) Å, b = 15.921(2) Å and c = 16.428(2) Å (Er8Se15?x), and a = 12.045(2) Å, b = 16.072(3) Å and c = 16.626(3) Å (Y8Se15?x), respectively. The structure consists of puckered [LnSe] double slabs and planar Se layers alternating along [001]. The planar Se layers contain a disordered arrangement of dimers, Se2? and vacancies. All compounds are semiconducting and contain trivalent rare earth metals (Ln3+).  相似文献   

3.
4.
The phase relations, crystal structure and thermoelectric properties of the type-I solid solution Ba(8)Ni(x)Si(46-x) were investigated. Based on X-ray diffraction, differential thermal analysis and electron probe microanalysis data, a partial phase diagram was constructed for the Si-rich part of ternary system Ba-Ni-Si at 800 °C. The solubility range of Ni in the clathrate-I phase at 800 °C was determined (2.9 ≤x≤ 3.8) and thermoelectric properties, namely electrical resistivity, Seebeck-coefficient and thermal conductivity, were measured in the temperature range from 300 to 850 K. A shift of the thermoelectric properties from a predominantly metallic to a more semiconducting behavior was observed for an increasing Ni-content. Density functional calculations revealed a significant decrease of the gap width in the density of states induced by the incorporation of Ni. Electrical resistivity and Seebeck coefficients for Ba(8)Ni(x)Si(46-x) with 3.3 ≤x≤ 3.8 have been modeled within the rigid band approximation.  相似文献   

5.
6.
Barium‐deficient forms of celsian (barium aluminium silicate) with the formula Ba1−xAl2−2xSi2+2xO8 (x = 0.20 and 0.06) have been identified. In contrast with the celsian–orthoclase solid solutions which have been reported previously, these forms, refined in the space group C2/m, with Ba and one O atom in the 4i sites with m site symmetry, and a further O atom in a 4g site with twofold axial symmetry, suggest a slight solid solution with silica. The serendipitous preparation of the compounds represents a possible hazard associated with solid‐state synthesis.  相似文献   

7.
8.
9.
Single‐crystal X‐ray diffraction has shown that lanthanum barium manganese trioxide, La0.815Ba0.185MnO3, is monoclinic (I2/c) below a first‐order phase transition at 187.1 (3) K. This result differs from the Pbnm symmetry usually assigned to colossal magnetoresistance oxides, A1−xAxMnO3 with x≃ 0.2, which adopt a distorted perovskite‐type crystal structure. The Mn atom lies on an inversion center, the disordered Li/Ba site is on a twofold axis and one of the two independent O atoms also lies on a twofold axis.  相似文献   

10.
Exploratory studies in the systems A–Al–Sn (A = K and Rb) yielded the clathrates K8AlxSn46–x (potassium aluminium stannide) and Rb8AlxSn46–x (rubidium aluminium stannide), both with the cubic type‐I structure (space group Pmn, No. 223; a ? 12.0 Å). The Al:Sn ratio is close to the idealized A8Al8Sn38 composition and it is shown that it can be varied slightly, in the range of ca ±1.5, depending on the experimental conditions. Both the (Sn,Al)20 and the (Sn,Al)24 cages in the structure are fully occupied by the guest alkali metal atoms, i.e. K or Rb. The A8Al8Sn38 formula has a valence electron count that obeys the valence rules and represents an intrinsic semiconductor, while the experimentally determined compositions A8AlxSn38?x suggest the synthesized materials to be nearly charge‐balanced Zintl phases, i.e. they are likely to behave as heavily doped p‐ or n‐type semiconductors.  相似文献   

11.
12.
A novel tetramethylammonium aluminosilicate hydrate with the approximate composition [NMe4]6[AlxSi8?xO18?x(OH)2+x] · 44H2O (x = 3–4) has been identified by powder X-ray diffraction as a component in a polyphasic solid mixture which crystallized at room temperature from an aqueous NMe4OH? Al2O3? SiO2 solution. Large crystals of the novel hydrate phase could be mechanically selected from that mixture. The crystal structure has been determined from 1 196 unique MoKα diffraction data measured at 180 K: Tetragonal crystal system, cell constants a = 16.181(4) and c = 17.450(4) Å, space group P4/mnc with Z = 2 formula units per unit cell, R = 0.072. The host-guest compound is of polyhedral clathrate type with a mixed three-dimensional, (mainly) four-connected network composed of oligomeric aluminosilicate anions [AlxSi8?xO18?x(OH)2+x]6? and H2O molecules linked via hydrogen bonds O? H …? O. The aluminosilicate anions possess a cube-shaped (double four-ring) structure. Orientationally disordered cationic guest species NMe4+ are enclosed in the large [4668] and [4151067] polyhedral voids of the host framework; the small [46] cages (i.e. the double four-ring anions) and [4356] cages are empty. The hydrate is a further member in a recently discovered series of clathrates with mixed tetrahedral networks, which provides a structure-chemical link between zeolite- and clathrate hydrate-type host-guest compounds.  相似文献   

13.
14.
The new ternary lithium copper aluminide, Li12Cu16+xAl26−x (x = 3.2), dodecalithium nonadecacopper tricosaaluminide, crystallizes in a new structure type with space group P4/mbm. Among nine independent atomic positions, two Al (one of which is statistically disordered with Cu) and three Li atoms have point symmetry m.2m, two statistically disordered Al/Cu atoms are in m.. sites, one Al atom is in a 4/m.. site and one Cu atom occupies a general site. The framework of Li12Cu16+xAl26−x consists of pseudo‐Frank–Kasper polyhedra enclosing channels of hexagonal prisms occupied by Li atoms. The crystallochemical peculiarity of this new structure type is discussed in relation to the derivatives from Laves phases (LiCuAl2 and Li8Cu12+xAl6−x) and to the well known CaCu5 structure.  相似文献   

15.
The structures, thermal and physical properties of ion conducting polymorphic Ag5Te2Cl1?xBrx and Ag5Te2?ySyCl have been investigated. A maximum substitution degree of x = 0.65 and y = 0.3 was derived from X‐ray powder diffraction. Mixtures of silver halides, silver chalcogenides and Ag3TeBr were observed for higher substitution degrees. Both silver chalcogenide halide systems show a Vegard type behaviour. Single crystal structure determinations of selected materials were performed at different temperatures to analyse the silver distribution in the tetragonal high temperature α‐ and the monoclinic room temperature β‐phases. After non‐harmonic refinement of the silver positions detailed joint probability density function analysis (jpdf) and determination of one particle potentials (opp) were carried out to investigate the diffusion pathways and bottlenecks of ion transport for those materials. A preferred anisotropic ion transport along the diffusion pathways for the α‐ and 1D zig‐zag diffusion pathways for the β‐phases were found. αβ and βγ phase transitions were determined by DSC and DTA methods and conductivities were measured using temperature dependent impedance spectroscopy. The substitution of tellurium by sulphur lowered the αβ phase transition from 334 K (Ag5Te2Cl) to 270 K (Ag5Te1.8S0.2Cl) while the opposite trend was found for the Ag5Te2Cl1?xBrx phases. The αβ phase transition of Ag5Te2Cl0.35Br0.65 at 343 K represents the highest transition observed for the silver chalcogenide halides under discussion. Total conductivities of approx. 1 Ω?1 cm?1 (α‐Ag5Te2Cl0.5Br0.5) and 0.24 Ω?1 cm?1 (α‐Ag5Te1.8S0.2Cl) at 473 K were found being slightly higher (Br) and lower (S) than the conductivity observed for α‐Ag5Te2Cl. A conductivity jump of more than two orders of magnitude, related to the αβ phase transitions, within the temperature range from 270 to 343 K is adjustable by simple variation of the composition and is therefore an extraordinary feature of these materials. The total conductivity is linearly correlated to the volume of the anion substructure and can be varied within more than half an order of magnitude.  相似文献   

16.
The thermal degradation of triphenyltin chloride, diphenyltin dichloride and phenyltin trichloride has been studied by pyrolysis at 375°C in sealed tubes for various time periods. In all cases, biphenyl and tin(II) chloride are produced. For both phenyltin trichloride and diphenyltin dichloride, ter- and poly-phenyls are also obtained. In some cases tin(IV) chloride or elemental tin are obtained. Pathways that account for all observed products are presented.  相似文献   

17.
18.
Two new isostructural compounds, namely heptapotassium silver tetrakis(tetraoxomolybdate), K7–x Ag1+x (MoO4)4 (0 ≤ x ≤ 0.4), and heptapotassium silver tetrakis(tetraoxotungstate), K7–x Ag1+x (WO4)4 (0 ≤ x ≤ 0.4), have been synthesized and found to crystallize in the polar space group P 63mc (Z = 2) with the unit‐cell dimensions a = 12.4188 (2) and c = 7.4338 (2) Å for K6.68Ag1.32(MoO4)4 (single‐crystal data), and a = 12.4912 (5) and c = 7.4526 (3) Å for K7Ag(WO4)4 (Rietveld analysis data). Both structures represent a new structure type, with characteristic [K1(X O4)6] `pinwheels' of K1O6 octahedra and six X O4 tetrahedra (X = Mo, W) connected by common opposite faces into columns along the c axes. The octahedral columns are linked to each other through Ag1O4 tetrahedra along with the K2 and K3/Ag2 polyhedra, forming the polar rods (…Ag1O4X 1O4–empty octahedron–Ag1O4…). Ag1 is located almost at the centre of the largest face of its coordination tetrahedron and seems to have some mobility. The new structure type is related to the Ba6Nd2Al4O15 and CaBaSiO4 types, and to other structures of the α‐K2SO4–glaserite family. The differential scanning calorimetry (DSC) and second harmonic generation (SHG) results show that both compounds undergo first‐order phase transformations to high‐temperature centrosymmetric phases.  相似文献   

19.
The synthesis and characterization of a new ternary dilanthanum lithium hexagermanide, La2LiGe6−x (x = 0.21), belonging to the Pr2LiGe6 structure type, and a quaternary dilanthanum lithium tetragermanium disilicide, La2LiGe4Si2, which crystallizes as an ordered variant of this type, are reported. In both structures, Li is on a site of mmm symmetry. All other atoms are on sites of m2m symmetry. These structures are new representatives of a homologous linear structure series based on structural fragments of the AlB2, CaF2 and ZrSi2 structure types. The observed 17‐vertex polyhedra are typical for La atoms and the environment of the Li atom is cubic. Two Ge atoms are enclosed in a tetragonal prism with one added atom (nine‐vertex polyhedron). The trigonal prismatic coordination is typical for Ge or Si atoms. The metallic nature of the bonding is indicated by the interatomic distances and electronic structure calculations.  相似文献   

20.
The magnesium transition metal stannides MgRuSn4 and MgxRh3Sn7—x (x = 0.98—1.55) were synthesized from the elements in glassy carbon crucibles in a water‐cooled sample chamber of a high‐frequency furnace. They were characterized by X‐ray diffraction on powders and single crystals. MgRuSn4 adopts an ordered PdGa5 type structure: I4/mcm, a = 674.7(1), c = 1118.1(2) pm, wR2 = 0.0506, 515 F2 values and 12 variable parameters. The ruthenium atoms have a square‐antiprismatic tin coordination with Ru—Sn distances of 284 pm. These [RuSn8/2] antiprisms are condensed via common faces forming two‐dimensional networks. The magnesium atoms fill square‐prismatic cavities between adjacent [RuSn4] layers with Mg—Sn distances of 299 pm. The rhodium based stannides MgxRh3Sn7—x crystallize with the cubic Ir3Ge7 type structure, space groupe Im3m. The structures of four single crystals with x = 0.98, 1.17, 1.36, and 1.55 have been refined from X‐ray diffractometer data. With increasing tin substitution the a lattice parameter decreases from 932.3(1) pm for x = 0.98 to 929.49(6) pm for x = 1.55. The rhodium atoms have a square antiprismatic tin/magnesium coordination. Mixed Sn/Mg occupancies have been observed for both tin sites but to a larger extend for the 12d Sn2 site. Chemical bonding in MgRuSn4 and MgxRh3Sn7—x is briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号