首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of 4‐methoxy‐1‐naphthol, C11H10O2, (I), contains an intermolecular O—H...O hydrogen bond which links the molecules into a simple C(2) chain running parallel to the shortest crystallographic b axis. This chain is reinforced by intermolecular π–π stacking interactions. Comparisons are drawn between the crystal structure of (I) and those of several of its simple analogues, including 1‐naphthol and some monosubstituted derivatives, and that of its isomer 7‐methoxy‐2‐naphthol. This comparison shows a close similarity in the packing of the molecules of its simple analogues that form π‐stacks along the shortest crystallographic axes. A substantial spatial overlap is observed between adjacent molecules in such stacks. In this group of monosubstituted naphthols, the overlap depends mainly on the position of the substituents carried by the naphthalene moiety, and the extent of the overlap depends on the substituent type. By contrast with (I), in the crystal structure of the isomeric 7‐methoxy‐2‐naphthol there are no O—H...O hydrogen bonds or π–π stacking interactions, and sheets are formed by O—H...π and C—H...π interactions.  相似文献   

2.
A new polymorph, (Ib), of the title compound, C8H8Br2, crystallizes in the space group P21/n, the same as the known polymorph (Ia) but with Z = 2 (imposed inversion symmetry) rather than Z = 4. The molecular structures are closely similar because the molecule has no degrees of torsional freedom except for methyl groups, but the packing arrangements are completely different. Polymorph (Ia) is characterized by linked trapezia of Br...Br interactions, whereas polymorph (Ib) features H...Br and Br...π interactions.  相似文献   

3.
The molecules of 4‐allyloxy‐7‐chloroquinoline, C12H10ClNO, (I), 7‐chloro‐4‐methoxyquinoline, C10H8ClNO, (II), and 7‐chloro‐4‐ethoxyquinoline, C11H10ClNO, (III), are all planar. In all three structures, π–π interactions between the quinoline ring systems are generated by unit‐cell translations along the a axes, irrespective of space group. These structures are the first reported for 4‐alkoxyquinolines.  相似文献   

4.
Molecules of the title compound, C13H9ClO2, contain an intramolecular O—H...O hydrogen bond, and the two aromatic rings are inclined at 57.02 (3)° with respect to one another. The crystal structure is supported by C—H...O, C—H...π and π–π interactions.  相似文献   

5.
The mol­ecules of the title compound, C11H14BrNO2, are assembled into a two‐dimensional network by a combination of hydrogen bonds and stacking interactions. The phenyl rings are stacked along the c direction by displaced π–π interactions, forming a lipophilic layer. The aliphatic amide residues are interconnected along [100] by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, forming hydro­philic layers.  相似文献   

6.
In the lattice of the title compound (systematic name: 5,6,7‐trihydroxy‐4′‐meth­oxy­isoflavone monohydrate), C16H12O6·H2O, the isoflavone mol­ecules are linked into chains through R43(17) motifs composed via O—H⋯O and C—H⋯O hydrogen bonds. Centrosymmetric R42(14) motifs assemble the chains into sheets. Hydrogen‐bonding and aromatic π–π stacking inter­actions lead to the formation of a three‐dimensional network structure.  相似文献   

7.
The pyrazine ring in two N‐substituted quinoxaline derivatives, namely (E)‐2‐(2‐methoxybenzylidene)‐1,4‐di‐p‐tosyl‐1,2,3,4‐tetrahydroquinoxaline, C30H28N2S2O5, (II), and (E)‐methyl 2‐[(1,4‐di‐p‐tosyl‐1,2,3,4‐tetrahydroquinoxalin‐2‐ylidene)methyl]benzoate, C31H28N2S2O6, (III), assumes a half‐chair conformation and is shielded by the terminal tosyl groups. In the molecular packing of the compounds, intermolecular C—H...O hydrogen bonds between centrosymmetrically related molecules generate dimeric rings, viz. R22(22) in (II) and R22(26) in (III), which are further connected through C—H...π(arene) hydrogen bonds and π–π stacking interactions into novel supramolecular frameworks.  相似文献   

8.
The crystal structure of 9‐(3‐methyl­but‐2‐enyl­oxy)­‐7H‐furo­[3,2‐g]­chro­men‐7‐one–4‐methoxy‐9‐(3‐methyl­but‐2‐enyl­oxy)‐7H‐­furo­[3,2‐g]­chromen‐7‐one (0.926/0.074), 0.926C16H14O4·0.074C17H16O5, is characterized by two independent imperatorin mol­ecules in the asymmetric unit, which exhibit different side‐chain conformations. A small amount of phellopterin overlaps with one of the two imperatorin mol­ecules. The supramol­ecular structure is supported by C—H...O, C—H...π and π–π interactions.  相似文献   

9.
Oxazolidin‐2‐ones are widely used as protective groups for 1,2‐amino alcohols and chiral derivatives are employed as chiral auxiliaries. The crystal structures of four differently substituted oxazolidinecarbohydrazides, namely N′‐[(E)‐benzylidene]‐N‐methyl‐2‐oxo‐1,3‐oxazolidine‐4‐carbohydrazide, C12H12N3O3, (I), N′‐[(E)‐2‐chlorobenzylidene]‐N‐methyl‐2‐oxo‐1,3‐oxazolidine‐4‐carbohydrazide, C12H12ClN3O3, (II), (4S)‐N′‐[(E)‐4‐chlorobenzylidene]‐N‐methyl‐2‐oxo‐1,3‐oxazolidine‐4‐carbohydrazide, C12H12ClN3O3, (III), and (4S)‐N′‐[(E)‐2,6‐dichlorobenzylidene]‐N,3‐dimethyl‐2‐oxo‐1,3‐oxazolidine‐4‐carbohydrazide, C13H13Cl2N3O3, (IV), show that an unexpected mild‐condition racemization from the chiral starting materials has occurred in (I) and (II). In the extended structures, the centrosymmetric phases, which each crystallize with two molecules (A and B) in the asymmetric unit, form A+B dimers linked by pairs of N—H...O hydrogen bonds, albeit with different O‐atom acceptors. One dimer is composed of one molecule with an S configuration for its stereogenic centre and the other with an R configuration, and possesses approximate local inversion symmetry. The other dimer consists of either R,R or S,S pairs and possesses approximate local twofold symmetry. In the chiral structure, N—H...O hydrogen bonds link the molecules into C(5) chains, with adjacent molecules related by a 21 screw axis. A wide variety of weak interactions, including C—H...O, C—H...Cl, C—H...π and π–π stacking interactions, occur in these structures, but there is little conformity between them.  相似文献   

10.
[μ‐N,N′‐Bis(pyridin‐3‐yl)benzene‐1,4‐dicarboxamide‐<!?show [forcelb]><!?tlsb=0.12pt>1:2κ2N:N′]bis{[N,N′‐bis(pyridin‐3‐yl)benzene‐1,4‐dicarboxamide‐κN]diiodidomercury(II)}, [Hg2I4(C18H14N4O2)3], is an S‐shaped dinuclear molecule, composed of two HgI2 units and three N,N′‐bis(pyridin‐3‐yl)benzene‐1,4‐dicarboxamide (L) ligands. The central L ligand is centrosymmetric and coordinated to two HgII cations via two pyridine N atoms, in a synsyn conformation. The two terminal L ligands are monodentate, with one uncoordinated pyridine N atom, and each adopts a synanti conformation. The HgI2 units show highly distorted tetrahedral (sawhorse) geometry, as the HgII centres lie only 0.34 (2) or 0.32 (2) Å from the planes defined by the I and pyridine N atoms. Supramolecular interactions, thermal stability and solid‐state luminescence properties were also measured.  相似文献   

11.
In the title compound, [W(C5H5NS)(CO)5], the pyridine‐4‐thiol ligand coordinates through the sulfur in the thione mode. The coordination sphere around the W atom is distorted from octahedral geometry by intermolecular hydrogen bonding and steric interactions between the pyridine ring and two CO ligands. An intermolecular pyridine–pyridine ring distance of 3.47 (1) Å indicates π–π stacking interactions between these ligand units.  相似文献   

12.
Two C2‐symmetric meso‐alkynylporphyrins, namely 5,15‐bis[(4‐butyl‐2,3,5,6‐tetrafluorophenyl)ethynyl]‐10,20‐dipropylporphyrin, C50H42F8N4, (I), and 5,15‐bis[(4‐butylphenyl)ethynyl]‐10,20‐dipropylporphyrin, C50H50N4, (II), show remarkable π–π stacking that forms columns of porphyrin centers. The tetrafluorophenylene moieties in (I) show intermolecular interactions with each other through the F atoms, forming one‐dimensional ribbons. No significant π–π interactions are observed in the plane of the phenylene and tetrafluorophenylene moieties in either (I) or (II). The molecules of both compounds lie about inversion centers.  相似文献   

13.
The title compound, 5‐hydroxy‐4′,7‐di­methoxy­isoflavone, C17H14O5, is composed of a benzo­pyran­one moiety, a phenyl moiety and two methoxy groups. The benzo­pyran­one ring is not coplanar with the phenyl ring, the dihedral angle between them being 56.28 (3)°. The two methoxy groups are nearly coplanar with their corresponding rings, having C—C—O—C torsion angles of 2.9 (2) and 5.9 (2)°. The mol­ecules are linked by C—H·O hydrogen bonds into sheets containing classical centrosymmetric (8) rings. The sheets are further linked by aromatic π–π stacking interactions and C—H·O hydrogen bonds into a supramolecular structure.  相似文献   

14.
The mixed‐ligand metal–organic complex poly[(μ3‐phthalato)[μ2‐3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐ido]dicopper(II)], [Cu2(C8H4O4)(C8H6N3)2]n, has been synthesized by the reaction of copper(II) acetate with 2‐(1H‐pyrazol‐3‐yl)pyridine (HL) and phthalic acid. The binuclear chelating–bridging L units are further linked by bridging phthalate ligands into a two‐dimensional network parallel to the (010) plane. The two‐dimensional networks are extended into a three‐dimensional supramolecular architecture viaπ–π stacking interactions.  相似文献   

15.
The complex poly[[aqua(μ2‐phthalato‐κ2O1:O2){μ3‐2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetato‐κ4N2,N3:O:O′}{μ2‐2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetato‐κ3N2,N3:O}dizinc(II)] dihydrate], {[Zn2(C10H8N3O2)2(C8H4O4)(H2O)]·2H2O}n, has been prepared by solvothermal reaction of 2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetonitrile (PPAN) with zinc(II). Under hydrothermal conditions, PPAN is hydrolyzed to 2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetate (PPAA). The structure determination reveals that the complex is a one‐dimensional double chain containing cationic [Zn4(PPAA)4]4+ structural units, which are further extended by bridging phthalate ligands. The one‐dimensional chains are extended into a three‐dimensional supramolecular architecture via hydrogen‐bonding and π–π stacking interactions.  相似文献   

16.
The title compound, C16H6N6·C2H6O, is an ethanol solvate of an aromatic phenanthroline‐based flat ligand. The latter exhibits a remarkable π–π stacking in the crystal structure, with interplanar distances of 3.27 and 3.40 Å, which directs the columnar organization of the ligands. The ethanol solvent molecule is located in channels between these columns, being hydrogen bonded to one of the N‐atom sites of the phenanthroline fragment.  相似文献   

17.
The synthesis and structural characterization of 2‐(furan‐2‐yl)‐1‐(furan‐2‐ylmethyl)‐1H‐benzimidazole [C16H12N2O2, (I)], 2‐(furan‐2‐yl)‐1‐(furan‐2‐ylmethyl)‐1H‐benzimidazol‐3‐ium chloride monohydrate [C16H13N2O2+·Cl·H2O, (II)] and the hydrobromide salt 5,6‐dimethyl‐2‐(furan‐2‐yl)‐1‐(furan‐2‐ylmethyl)‐1H‐benzimidazol‐3‐ium bromide [C18H17N2O2+·Br, (III)] are described. Benzimidazole (I) displays two sets of aromatic interactions, each of which involves pairs of molecules in a head‐to‐tail arrangement. The first, denoted set (Ia), exhibits both intermolecular C—H...π interactions between the 2‐(furan‐2‐yl) (abbreviated as Fn) and 1‐(furan‐2‐ylmethyl) (abbreviated as MeFn) substituents, and π–π interactions involving the Fn substituents between inversion‐center‐related molecules. The second, denoted set (Ib), involves π–π interactions involving both the benzene ring (Bz) and the imidazole ring (Im) of benzimidazole. Hydrated salt (II) exhibits N—H...OH2...Cl hydrogen bonding that results in chains of molecules parallel to the a axis. There is also a head‐to‐head aromatic stacking of the protonated benzimidazole cations in which the Bz and Im rings of one molecule interact with the Im and Fn rings of adjacent molecules in the chain. Salt (III) displays N—H...Br hydrogen bonding and π–π interactions involving inversion‐center‐related benzimidazole rings in a head‐to‐tail arrangement. In all of the π–π interactions observed, the interacting moieties are shifted with respect to each other along the major molecular axis. Basis set superposition energy‐corrected (counterpoise method) interaction energies were calculated for each interaction [DFT, M06‐2X/6‐31+G(d)] employing atomic coordinates obtained in the crystallographic analyses for heavy atoms and optimized H‐atom coordinates. The calculated interaction energies are −43.0, −39.8, −48.5, and −55.0 kJ mol−1 for (Ia), (Ib), (II), and (III), respectively. For (Ia), the analysis was used to partition the interaction energies into the C—H...π and π–π components, which are 9.4 and 24.1 kJ mol−1, respectively. Energy‐minimized structures were used to determine the optimal interplanar spacing, the slip distance along the major molecular axis, and the slip distance along the minor molecular axis for 2‐(furan‐2‐yl)‐1H‐benzimidazole.  相似文献   

18.
Molecules of 1,2‐bis(4‐bromophenyl)‐1H‐benzimidazole, C19H12Br2N2, (I), and 2‐(4‐bromophenyl)‐1‐(4‐nitrophenyl)‐1H‐benzimidazole, C19H12BrN3O2, (II), are arranged in dimeric units through C—H...N and parallel‐displaced π‐stacking interactions favoured by the appropriate disposition of N‐ and C‐bonded phenyl rings with respect to the mean benzimidazole plane. The molecular packing of the dimers of (I) and (II) arises by the concurrence of a diverse set of weak intermolecular C—X...D (X = H, NO2; D = O, π) interactions.  相似文献   

19.
The addition of the π–π stacking agent octafluorotoluene (OFT) resulted in up to a 50% reduction in monomer conversion after 24 h for atom transfer radical polymerization (ATRP) reactions of styrene, when performed at 85 °C with 1 eq of OFT compared with styrene in the initial reaction mixture. Monitoring the progress showed that the ATRP of styrene in the presence of either OFT or hexafluorobenzene (HFB) maintained a linear relationship between monomer conversion and number average molecular weights, while showing a first order rate dependence on monomer. The effects of π–π stacking on the KATRP could be overcome by using adjusting the redox activity of the metal‐ligand complex while maintaining reaction temperatures of 85 °C. Further experiments showed that nitroxide‐mediated polymerizations of St were affected to an identical extent by the presence of the π–π stacking agent HFB. The ATRP of pentafluorostyrene (PFSt) in the presence of π–π stackers benzene or toluene showed an increase in monomer conversion compared with reactions in their absence, consistent with Mn π–π stacking increasing the stability of the active radical. Interactions between the π–π stacking agents OFT and HFB and the aromatic groups in the ATRP of St or PFSt were verified by 1H NMR analysis. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
Centrosymmetric dimers of ZnII with singly deprotonated 2‐[(2‐carbamoylhydrazin‐1‐ylidene)methyl]phenolate, [Zn2(C8H8N3O2)Cl2]·2CH3OH, form an infinite one‐dimensional hydrogen‐bonded chain which is further aggregated by non‐aromatic–aromatic π–π stacking and nonclassical N—H...Cl hydrogen bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号