首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The zinc(II) atom in the centrosymmetric complex is in a distorted N6 octahedral geometry defined by two tridentate ligands. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
In the title compound, [Cu(C9H5N4O)Cl(C12H8N2)]n or [Cu(tcnoet)Cl(phen)]n, where phen is 1,10‐phenanthroline and tcnoet is 1,1,3,3‐tetracyano‐2‐ethoxypropenide, the axially elongated (4 + 2) coordination polyhedron around the CuII centre contains N atoms from three different tcnoet ligands. The resulting coordination polymer takes the form of sheets which are linked in pairs by a single C—H...N hydrogen bond to form bilayers. The bond lengths provide evidence for significant bond fixation in the phen ligand and extensive electronic delocalization in the tcnoet ligand, where the two –C(CN)2 units are rotated, in conrotatory fashion, out of the plane of the central C3O fragment.  相似文献   

3.
The title compound, [Mn(C12H8N2)2(H2O)2](C4H4O4S)·[Mn(C4H4O4S)(C12H8N2)2]·13H2O, contains one dianion of thio­diglycolic acid (tdga2−) and two independent man­ganese(II) moieties, viz. [Mn(phen)2(H2O)2]2+ and [Mn(tdga)(phen)2], where phen is 1,10‐phenanthroline. The MnII atoms are octahedrally coordinated by four N atoms of two bidentate phen ligands [Mn—N = 2.240 (2)–2.3222 (19) Å] and either two water O atoms or two tdga carboxyl O atoms [Mn—O = 2.1214 (17)–2.1512 (17) Å]. The tdga ligand chelates as an O,O′‐bidentate ligand, forming an eight‐membered ring with one Mn atom. The free tdga2− dianion is hydrogen bonded to an [Mn(phen)2(H2O)2]2+ ion, with O⋯O distances of 2.606 (2) and 2.649 (2) Å. The crystal structure is further stabilized by an extensive network of hydrogen bonds involving 13 water mol­ecules.  相似文献   

4.
A novel dinuclear bismuth(III) coordination compound, [Bi2(C7H3NO4)2(N3)2(C12H8N2)2]·4H2O, has been synthesized by an ionothermal method and characterized by elemental analysis, energy‐dispersive X‐ray spectroscopy, IR, X‐ray photoelectron spectroscopy and single‐crystal X‐ray diffraction. The molecular structure consists of one centrosymmetric dinuclear neutral fragment and four water molecules. Within the dinuclear fragment, each BiIII centre is seven‐coordinated by three O atoms and four N atoms. The coordination geometry of each BiIII atom is distorted pentagonal–bipyramidal (BiO3N4), with one azide N atom and one bridging carboxylate O atom located in axial positions. The carboxylate O atoms and water molecules are assembled via O—H...O hydrogen bonds, resulting in the formation of a three‐dimensional supramolecular structure. Two types of π–π stacking interactions are found, with centroid‐to‐centroid distances of 3.461 (4) and 3.641 (4) Å.  相似文献   

5.
In the title compound, [Cu(C7H3N2O4)(C4H5N2)(H2O)], (I), pyridine‐2,6‐dicarboxylate (pydc2−), 2‐aminopyrimidine and aqua ligands coordinate the CuII centre through two N atoms, two carboxylate O atoms and one water O atom, respectively, to give a nominally distorted square‐pyramidal coordination geometry, a common arrangement for copper complexes containing the pydc2− ligand. Because of the presence of Cu...Xbridged contacts (X = N or O) between adjacent molecules in the crystal structures of (I) and three analogous previously reported compounds, and the corresponding uncertainty about the effective coordination number of the CuII centre, density functional theory (DFT) calculations were used to elucidate the degree of covalency in these contacts. The calculated Wiberg and Mayer bond‐order indices reveal that the Cu...O contact can be considered as a coordination bond, whereas the amine group forming a Cu...N contact is not an effective participant in the coordination environment.  相似文献   

6.
The title compound, [Sr(C7H5O4)2(C12H8N2)2(H2O)2]·2C12H8N2·4H2O, consists of an SrII complex, uncoordinated phenanthroline (phen) molecules and solvent water molecules. The SrII ion is located on a twofold axis and is coordinated by two phen ligands, two dihydroxybenzoate anions and two water molecules in a distorted tetragonal antiprismatic geometry. Partially overlapped arrangements exist between parallel coordinated and parallel uncoordinated phen rings; the face‐to‐face separations between the former (coordinated) and the latter (uncoordinated) rings are 3.436 (13) and 3.550 (14) Å, respectively. This difference suggests the effect of metal coordination on π–π stacking between phen rings.  相似文献   

7.
The title compound, [Zn(C7H4NO4)2(C12H8N2)(H2O)], has been synthesized. X‐Ray analysis reveals that it is a neutral zinc(II) mononuclear carboxyl­ate complex based on mixed N‐ and O‐donor ligands. The Zn atom is five‐coordinate in a distorted trigonal–bipyramidal coordination environment involving two O atoms of two monodentate 2‐nitro­benzoate mol­ecules, two N atoms of a 1,10‐phenanthroline mol­ecule and one O atom of a water mol­ecule. The axial positions are occupied by a carboxyl­ate O atom from the 2‐nitro­benzoate ligand and an N atom from the 1,10‐phenanthroline ligand [N—Zn—O = 167.66 (9)°].  相似文献   

8.
The structure of [Zn(S2CNEt2)2]2(4,4′‐bipy) shows two independent dimeric molecules, one located about a centre of inversion, the other lying on a two fold axis containing the zinc atoms. Bidentate coordination by the dithiocarbamate ligands and a distorted square pyramidal geometry are found for two of zinc atoms whereas for the third zinc atom, the geometry is intermediate between square pyramidal and trigonal bipyramidal, a result that underscores the flexibility of coordination in these systems. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
The structure of Zn[S2CN(CH2Ph)2]2(2,2′‐bipy) features a distorted trigonal prismatic geometry around the zinc centre defined by an N2S4 donor set; the molecule has two‐fold symmetry. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
The reaction of 4,4′‐bipyridine with copper acetate in the presence of 4‐nitrophenol led to the formation of the title compound, {[Cu(CH3COO)2(C10H8N2)]·C6H5NO3·2H2O}n. The complex forms a double‐stranded ladder‐like coordination polymer extending along the b axis. The double‐stranded polymers are separated by 4‐nitrophenol and water solvent molecules. The two CuII centres of the centrosymmetric Cu2O2 ladder rungs have square‐pyramidal coordination environments, which are formed by two acetate O atoms and two 4,4′‐bipyridine N atoms in the basal plane and another acetate O atom at the apex. The ladder‐like double strands are separated from each other by one unit‐cell length along the c axis, and are connected by the water and 4‐nitrophenol molecules through a series of O—H...O and C—H...O hydrogen‐bonding interactions and two unique intermolecular π–π interactions.  相似文献   

11.
In the title compound, [Pb(C12H8NO2)2]n, the Pb atom sits on a crystallographic C2 axis and is six‐coordinate, ligated by two chelating carboxylate groups from two 3‐(pyridin‐4‐yl)benzoate (L) ligands and by two N atoms from another two ligands. Each ligand bridges two PbII centres, extending the structure into a corrugated two‐dimensional (4,4) net. The ligand L is conformationally chiral, with a torsion angle of 27.9 (12)° between the planes of its two rings. The torsion angle has the same sense throughout the structure, so that the extended two‐dimensional polymer is homochiral. Investigation of the thermal stability shows that the network is stable up to 613 K. In the absence of any stereoselective factor in the preparation of the compound, the enantiomeric purity of the crystal studied, based only on the torsional conformation of the ligand, implies that the bulk sample is a racemic conglomerate.  相似文献   

12.
In the first title salt, [Cu(C12H8N2)2(C5H10N2Se)](ClO4)2, the CuII centre occupies a distorted trigonal–bipyramidal environment defined by four N donors from two 1,10‐phenanthroline (phen) ligands and by the Se donor of a 1,3‐dimethylimidazolidine‐2‐selone ligand, with the equatorial plane defined by the Se and by two N donors from different phen ligands and the axial sites occupied by the two remaining N donors, one from each phen ligand. The Cu—N distances span the range 1.980 (10)–2.114 (11) Å and the Cu—Se distance is 2.491 (3) Å. Intermolecular π–π contacts between imidazolidine rings and the central rings of phen ligands generate chains of cations. In the second salt, [Cu(C10H8N2)2(C3H6N2S)](ClO4)2, the CuII centre occupies a similar distorted trigonal–bipyramidal environment comprising four N donors from two 2,2′‐bipyridyl (bipy) ligands and an S donor from an imidazolidine‐2‐thione ligand. The equatorial plane is defined by the S donor and two N donors from different bipy ligands. The Cu—N distances span the range 1.984 (6)–2.069 (7) Å and the Cu—S distance is 2.366 (3) Å. Intermolecular π–π contacts between imidazolidine and pyridyl rings form chains of cations. A major difference between the two structures is due to the presence in the second complex of two N—H...O hydrogen bonds linking the imidazolidine N—H hydrogen‐bond donors to perchlorate O‐atom acceptors.  相似文献   

13.
The title compound, [Mn(C12H8N2)(H2O)4]SO4·2H2O, was obtained unexpectedly as a by‐product from the reaction of sodium maleate, 1,10‐phenanthroline (phen) and manganese sulfate tetrahydrate. The Mn atom is coordinated by the two N atoms of the phen ligand and four water O atoms in a highly distorted octahedral geometry, with Mn—O distances in the range 2.155 (2)–2.203 (2) Å and Mn—N distances of 2.254 (2) and 2.272 (3) Å. Extensive hydrogen‐bonding interactions involving the water mol­ecules and sulfate anions, and stacking interactions involving the phen rings, are observed in the crystal structure.  相似文献   

14.
The centrosymmetric structure of {Zn[S2CN(CH2Ph)2]2}2(4,4′‐bipy) features chelating dithiocarbamate ligands so that a trigonal bipyramidal NS4 coordination geometry for zinc results. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Coordination polymers are constructed from two basic components, namely metal ions, or metal‐ion clusters, and bridging organic ligands. Their structures may also contain other auxiliary components, such as blocking ligands, counter‐ions and nonbonding guest or template molecules. The choice or design of a suitable linker is essential. The new title zinc(II) coordination polymer, [Zn(C5H5NO3P)Cl]n , has been hydrothermally synthesized and structurally characterized by single‐crystal X‐ray diffraction and vibrational spectroscopy (FT–IR and FT–Raman). Additionally, computational methods have been applied to derive quantitative information about interactions present in the solid state. The compound crystallizes in the monoclinic space group C 2/c . The four‐coordinated ZnII cation is in a distorted tetrahedral environment, formed by three phosphonate O atoms from three different (pyridin‐1‐ium‐3‐yl)phosphonate ligands and one chloride anion. The ZnII ions are extended by phosphonate ligands to generate a ladder chain along the [001] direction. Adjacent ladders are held together via N—H…O hydrogen bonds and offset face‐to‐face π–π stacking interactions, forming a three‐dimensional supramolecular network with channels. As calculated, the interaction energy between the neighbouring ladders is −115.2 kJ mol−1. In turn, the cohesive energy evaluated per asymmetric unit‐equivalent fragment of a polymeric chain in the crystal structure is −205.4 kJ mol−1. This latter value reflects the numerous hydrogen bonds stabilizing the three‐dimensional packing of the coordination chains.  相似文献   

16.
<!?tlsb=‐0.2pt>Nitrogen‐based polydentate ligands are of interest owing to their flexible complexation to transition metal atoms. For the title compound, [Ni(C15H17N2)2], a transition metal complex formed by the coordination of two identical N,N′‐bidentate mono(imino)pyrrolyl ligands to an NiII centre, an X‐ray crystal diffraction study indicates that the two ligands show an inverted arrangement with respect to one another around the NiII centre, which is located on a crystallographic inversion centre. The planes of the aromatic substituents at the imine N atoms of the ligands show dihedral angles of 85.91 (5)° with respect to the NiN4 plane. The Ni—N bond lengths are in the range 1.9072 (15)–1.9330 (15) Å and the Nimino—Ni—Npyrrole bite angles are 83.18 (6)°. The Ni—Npyrrole bond is substantially shorter than the Ni—Nimino bond. Molecules are linked into an extensive network by means of intermolecular C—H...π(arene) hydrogen bonds in which every molecule acts both as hydrogen‐bond donor and acceptor. The supramolecular assembly takes the form of an infinite two‐dimensional sheet.  相似文献   

17.
The asymmetric unit of the title compound, [Zn(C10H6NO2)2(C12H8N2)]·1.5C3H7NO, contains one monomeric zinc com­plex and 1.5 disordered di­methyl­form­amide solvate mol­ecules. The Zn atom is coordinated to one 1,10‐phenanthroline ligand and to two iso­quinoline­carboxyl­ate anions (IQC?) via their N and O atoms. The complex exhibits a distorted octahedral geometry around the ZnII atom, with the apical positions occupied by the O atoms of the IQC? ligands. The Zn atom lies 0.049 (1) Å out of the basal plane. The crystal packing is characterized by several hydrogen bonds.  相似文献   

18.
The application of transition metal chelates as chemotherapeutic agents has the advantage that they can be used as a scaffold around which ligands with DNA recognition elements can be anchored. The facile substitution of these components allows for the DNA recognition and binding properties of the metal chelates to be tuned. Copper is a particularly interesting choice for the development of novel metallodrugs as it is an endogenous metal and is therefore less toxic than other transition metals. The title compound, [Cu(C16H11N2O)2], was synthesized by reacting N‐(quinolin‐8‐yl)benzamide and the metal in a 2:1 ratio. Ligand coordination required deprotonation of the amide N—H group and the isolated complex is therefore neutral. The metal ion adopts a flattened tetrahedral coordination geometry with the ligands in a pseudo‐trans configuration. The free rotation afforded by the formal single bond between the amide group and phenyl ring allows the phenyl rings to rotate out‐of‐plane, thus alleviating nonbonded repulsion between the phenyl rings and the quinolyl groups within the complex. Weak C—H…O interactions stabilize a dimer in the solid state. Density functional theory (DFT) simulations at the PBE/6‐311G(dp) level of theory show that the solid‐state structure (C1 symmetry) is 79.33 kJ mol−1 higher in energy than the lowest energy gas‐phase structure (C2 symmetry). Natural bond orbital (NBO) analysis offers an explanation for the formation of the C—H…O interactions in electrostatic terms, but the stabilizing effect is insufficient to support the dimer in the gas phase.  相似文献   

19.
One of most interesting systems of coordination polymers constructed from the first‐row transition metals is the porous ZnII coordination polymer system, but the numbers of such polymers containing N‐donor linkers are still limited. The title double‐chain‐like ZnII coordination polymer, [Ag2Zn(CN)4(C10H10N2)2]n, presents a one‐dimensional linear coordination polymer structure in which ZnII ions are linked by bridging anionic dicyanidoargentate(I) units along the crystallographic b axis and each ZnII ion is additionally coordinated by a terminal dicyanidoargentate(I) unit and two terminal 1‐benzyl‐1H‐imidazole (BZI) ligands, giving a five‐coordinated ZnII ion. Interestingly, there are strong intermolecular AgI…AgI interactions between terminal and bridging dicyanidoargentate(I) units and C—H…π interactions between the phenyl rings of BZI ligands of adjacent one‐dimensional linear chains, providing a one‐dimensional linear double‐chain‐like structure. The supramolecular three‐dimensional framework is stabilized by C—H…π interactions between the phenyl rings of BZI ligands and by AgI…AgI interactions between adjacent double chains. The photoluminescence properties have been studied.  相似文献   

20.
The title complex, [Cu(C12H8N2)2]I, (I), has been crystallized in two polymorphic forms, both containing four‐coordinate copper. Both forms are orthorhombic, with form (Ia) crystallizing in the primitive space group Pban and form (Ib) in the c‐centred space group Ccca. In (Ia), the complex cation and the I anion both have 222 crystallographic symmetry, and in (Ib), the complex cation has approximate 222 symmetry, with the I counter‐ion distributed over three special positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号