首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(phenylene oxide) block and random copolymers are synthesized by oxidative polymerization of 2,6-dimethylphenol and 2,6-diphenylphenol for potential alkaline exchange membrane application. The copolymers are functionalized on the methyl substituted repeat units through a two-step process to produce pendent quaternary ammonium cationic groups. The amount of quaternary ammonium cations and the ion exchange capacity are quantified through titration measurements. Ionic conductivity of the copolymer membranes is measured by electrochemical impedance spectroscopy. Block copolymers show increased bromide conductivity at higher ion exchange capacities compared with the random copolymer analogs. The bromide conductivity for a block copolymer film with an ion exchange capacity of 1.27 mequiv/g reaches 26 mS/cm at 90 °C and 95% relative humidity. The hydroxide conductivity for the same film was measured to be 84 mS/cm at 80 °C and 95% relative humidity. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1770–1778, 2013  相似文献   

2.
Two new polymerizable surfactants (surfmers), (11-acryloyloxyundecyl)dimethylethylammonium bromide (ethyl surfmer) and (11-acryloyloxyundecyl)dimethyl(2-hydroxyethyl)ammonium bromide (hydroxyethyl surfmer), were synthesized and characterized. The binary phase diagrams of both surfmer/water systems are described. Both surfmers can form isotropic solutions and lamellar lyotropic liquid crystalline phases. The hydroxyethyl surfmer/water system forms a lamellar phase for weight concentrations of surfmer between 70 and 90% relative to between 75 and 85% for the ethyl surfmer/water system. The differences in the self assembly of these surfmers were attributed to the ability of hydroxyethyl surfmer to form hydrogen bonds (between two head groups and with water), whereas no such interactions can occur with the ethyl surfmer system.  相似文献   

3.
以溴代烷与二甲基烯丙基胺(DMAA)为原料合成了二甲基烯丙基类季铵盐;探讨了反应温度、原料配比、反应时间及溶剂对反应产率的影响,确定了最佳合成条件;并采用红外光谱仪、核磁共振谱仪(1 H NMR)及质谱仪表征了产物的结构.  相似文献   

4.
Anion exchange membranes comprised of a poly(phenylene) backbone and one of five different cationic head-groups are prepared, briefly characterized, and tested for stability in 4 M KOH at 90 °C. The two membranes with resonance-stabilized cations (benzyl pentamethylguanidinium and benzyl N-methylimidazolium) show large (>25%) decreases in both conductivity and ion exchange capacity (IEC) after just one day of testing. The membrane with benzyl trimethylammonium cations shows a 33% loss of conductivity (14% decrease in IEC) after 14 days while the membrane with trimethylammonium cations attached by a hexamethylene spacer shows the least degradation: a 5% loss of conductivity over 14 days with no accompanying loss in IEC. A similar membrane which has a six-carbon spacer and a ketone adjacent to the phenyl ring shows much lower stability, suggesting that the ketone takes part in degradation reactions. © 2012 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1736–1742, 2013  相似文献   

5.
A series of sulfonated homo‐ and random co‐polyimides (co‐SPI) based on 2,4‐diaminobenzenesulfonic acid (2,4‐DABS) and 2,5‐diaminobenzenesulfonic acid (2,5‐DABS) has been synthesized via conventional two‐step polyimidization method. 2,4‐DABS and 2,5‐DABS were used as sulfonated diamine compounds, 4,4′‐oxydianiline (ODA) and 4,4′‐diaminodiphenyl sulfone (DDS) were used as non‐sulfonated diamine compounds. Mixtures of sulfonated and non‐sulfonated diamine compounds were reacted with benzophenonetetracarboxylic dianhydride (BTDA) to obtain co‐SPI membranes. Molar ratios of sulfonated to non‐sulfonated diamine were systematically varied to produce copolymers of controlled compositions. The co‐SPIs were evaluated for thermal oxidative stability, ion exchange capacity (IEC), water uptake, proton conductivity, solubility, and hydrolytic stability. Proton conductivity and hydrolytic stability of the co‐SPIs were compared with the fully aromatic polyimide, homo‐SPIs (BTDA/2,4‐DABS and BTDA/2,5‐DABS). Regarding thermogravimetric analysis (TGA) analysis, it is concluded that desulfonation temperature in the range of 200–350°C suggests high stability of sulfonic acid groups. co‐SPIs with 40 mol% of 2,4‐DABS showed similar or higher proton conductivity than Nafion® 117 in water. Proton conductivity values of the co‐SPIs were mainly a function of IEC and water uptake. Consequently, the optimum concentration of 2,4‐DABS was found to be in the range of 30–40 mol% from the viewpoint of proton conductivity, IEC, and hydrolytic stability. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
We investigate the morphology, segmental dynamics, and conductivity of 1‐ethyl‐3‐methylimidazolium trifluoromethanesulfonate (EMI‐Tf) swollen short side chain perfluorosulfonate ionomer (Aquivion) over a broad uptake range using small angle X‐ray scattering (SAXS), dielectric relaxation spectroscopy, and transient current measurement. The SAXS data indicate that the absorbed EMI‐Tf is mainly bounded in the ionic region of Aquivion. At low uptakes, EMI‐Tf acts as an effective plasticizer lowering the cluster Tg and markedly shifting the segmental relaxation to a high frequency; however, at high uptakes, the additional EMI‐Tf acts like a filler instead. A time–domain model was employed to quantify the conductivity of these membranes containing two mobile ion species, that is, cations and anions. The conductivity of both neat EMI‐Tf and EMI‐Tf swollen membranes exhibits Vogel‐Fulcher‐Tamman relation, revealing different activation parameters for ionic conduction. Furthermore, membranes containing different EMI‐Tf uptakes have similar conductivity over the reduced Tg/T axis and also follow Debye‐Stokes‐Einstein relation. Therefore, despite the abrupt change in conductivity near the critical uptake (29 wt %), both cluster Tg and segmental motion remain the key factors for the ionic conduction in these EMI‐Tf swollen membranes. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1273–1280  相似文献   

7.
Two new 1,10‐phenanthroline (Phen) containing conjugated oligomers, oligo‐3,8‐bis(4‐octylthiophene‐2‐yl)‐1,10‐phenanthroline) (PDTPh) and oligo‐3,8‐bis‐(4‐octyl‐5‐(4‐ctylthiophene‐2‐yl)thiophene‐2‐yl)‐1,10‐phenanthroline) (PTTPh), as well as their corresponding monomers (OTPhOT and OTOTPhOTOT) were prepared and their metal ion‐sensing properties were investigated. The oligomers showed high thermal stability, good proccessibility, and gave varied color when reacted with different metal ions. Oligomers also showed distinct responses toward metal ions when compared with their corresponding monomers, suggesting that the ionochromic responses were determined by not only the coordinating ability of Phen unit but also the conformation of oligomer chains. Moreover, the differences in the ion‐sensing behaviors between OTPhOT and OTOTPhOTOT also suggested that the coordination ability of Phen depends on its substituents. The oligo‐alkylthiophene moieties in PDTPh and PTTPh acted as spacers to reorganize the conformation of the oligomer chains, as well as the electron donating groups to adjust the coordination ability of the Phen. These findings provide a clue for designing Phen‐containing ion‐sensors for specified ion‐sensing applications. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1586–1597, 2008  相似文献   

8.
This study uses variable temperature 19F solid‐state nuclear magnetic resonance (SSNMR) spectroscopy to determine the influence of electrostatic interactions on the T1, T, and T2 values of Nafion®. Because of a “homogenizing” of the T1's as a result of spin diffusion, it was not possible to resolve from the T1 experiments the relative motions of the side‐ and main‐chain. The initial increase in T as a function of increasing temperature has been attributed to backbone rotations that increase with increasing temperature. The maxima observed in the T plots suggest a change in the dominant relaxation mechanism at that temperature. The similarity in relaxation behavior of the side‐ and main‐chains suggests that the motions are dynamically coupled, because of the fact that the side‐chain is directly attached to the main‐chain. Two T values were observed for the main‐chain at high temperatures, which has been attributed to a thermally activated ion‐hopping process. The results of T2 studies show that correlated motions of the side‐ and main‐chain exist at low temperatures. However, at elevated temperatures the T2 values for the side‐chain increase rapidly while remaining relatively constant for the main‐chain, indicating an onset of mobility of the side‐chains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2177–2186, 2007  相似文献   

9.
The water content, the ion exchange capacity, the transport number of counter-ion of the AMV and AMX anion exchange membranes were determined. The two-phase model (gel phase and interstitial phase) of structure microheterogeneity was validated by means of conductivity measurements. The chronopotentiometric results allowed us to affirm the overall surface homogeneity of the membranes. According to the two-phase model, the influence of the gel phase and the interstitial phase on the membrane permselectivity was discussed in detail. Majorities of co-ions exist in the interstitial phase, thus they have no influence on the transport of counter-ions in the gel phase. The determination of the KCl amount sorbed in the interstitial phase confirmed the existence of partition equilibrium between the interstitial phase and the external solution. Such partition equilibrium can be considered within the microheterogeneous model in order to represent the internal structure of the electromembranes.  相似文献   

10.
Alkaline fuel cells potentially offer improved conversion efficiency and the prospect of using non‐noble metal catalysts; however, low conductivity and fast degradation of anion exchange membranes (AEMs) prevent their widespread application. In this work, a series of novel composite AEMs were synthesized by incorporating guanidinium‐based polymers into a porous polytetrafluoroethylene (PTFE) film. The guanidinium‐based polymers were polymerized using a condensation process between a guanidinium salt and two different diamines so that the guanidinium cations were tethered to the polymer backbone to enhance both conductivity and durability. In addition, polymer crosslinking was conducted to further reinforce the mechanical strength of the membranes and interlock the guanidinium moieties to the porous PTFE. It was found that the ionic conductivity of the synthesized membrane reached up to approximately 80 mS cm?1 at 20°C in deionized water. These membranes also exhibited superior stability compared to commercial quaternary ammonium AEMs after being exposed in 5 M KOH solution at 55°C for 50 h. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Robust hydroxide conducting membranes are required for long‐lasting, low‐cost solid alkaline fuel cells (AFCs). In this study, we synthesize Nafion‐based anion exchange membranes (AEMs) via amination of the Nafion precursor membrane with 1,4‐dimethylpiperazine. This initial reaction produces an AEM with covalently attached dimethylpiperazinium cations neutralized with fluoride anions, while a subsequent ion exchange reaction produces a hydroxide ion conducting membrane. These AEMs possess high thermal stability and different thermal transition temperatures compared to Nafion, while small‐angle X‐ray scattering reveals a similar ionic morphology. The hydroxide ion conductivity of the Nafion‐based AEM is fivefold lower than the proton conductivity of Nafion at 80 °C and 90% relative humidity. More importantly, the hydroxide conductivity is insensitive to drying and rehydrating the membrane, which is atypical of other AEMs with quaternary ammonium cations. The high chemical and thermal stability of this hydroxide conducting Nafion‐based AEM provides a promising alternative for AFCs. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

12.
A convenient and efficient method for the preparation of anion exchanged quaternary salts has been developed. The method involves treatment of quaternary halides with methanolic solutions of suitable protic acids. The process is effective for aromatic and aliphatic quaternary halides with no loss of alkyl group integrity in the quaternary salt.  相似文献   

13.
Partially disulfonated hydroquinone (HQ)‐based poly(arylene ether sulfone) random copolymers were synthesized and characterized for application as proton exchange membranes. The copolymer composition was varied in the degree of disulfonation. The copolymers were characterized by 1H NMR, Differential Scanning Calorimetry (DSC), and other analytical techniques. The copolymer with a 25% degree of disulfonation showed the best balance between water uptake and proton conductivity. The copolymers showed substantially reduced methanol permeability compared with Nafion® and satisfactory direct methanol fuel cell performance. The methanol selectivity improved significantly in comparison to Nafion® 117. At a given ionic composition, the HQ‐based system showed higher water uptake and proton conductivity than the biphenol‐based (BPSH‐xx) poly(arylene ether sulfone)s copolymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 384–391, 2009  相似文献   

14.
New water‐soluble methacrylate polymers with pendant quaternary ammonium (QA) groups were synthesized and used as antibacterial materials. The polymers with pendant QA groups were obtained by the reaction of the alkyl halide groups of a previously synthesized functional methacrylate homopolymer with various tertiary alkyl amines containing 12‐, 14‐, or 16‐carbon alkyl chains. The structures of the functional polymer and the polymers with QA groups were confirmed with Fourier transform infrared and 1H and 13C NMR. The degree of conversion of alkyl halides to QA sites in each polymer was determined by 1H NMR to be over 90% in all cases. The number‐average molecular weight and polydispersity of the functional polymer were determined by size exclusion chromatography to be 32,500 g/mol and 2.25, respectively. All polymers were thermally stable up to 180 °C according to thermogravimetric analysis. The antibacterial activities of the polymers with pendant QA groups against Staphylococcus aureus and Escherichia coli were determined with broth‐dilution and spread‐plate methods. All the polymers showed excellent antibacterial activities in the range of 32–256 μg/mL. The antibacterial activity against S. aureus increased with an increase in the alkyl chain length for the ammonium groups, whereas the antibacterial activity against E. coli decreased with increasing alkyl chain length. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5965–5973, 2006  相似文献   

15.
A series of long-chain quaternary ammonium hydroxides were synthesized from tertiary amines and confirmed by ~1H NMR and FTIR.Surface properties and pH of these surfactants were investigated.The critical micelle concentrations(CMC) of the synthesized quaternary ammonium hydroxides are lower than the conventional quaternary ammonium surfactants.The micelles shapes of these long-chain quaternary ammonium hydroxides in aqueous solution are spherical at a concentration of 0.1 mol/L.The pH values of the synthesized quaternary ammonium hydroxides are 12.25-12.51.  相似文献   

16.
Journal of Radioanalytical and Nuclear Chemistry - A new pyridyl anion exchange resin (PS-N) was synthesized by chloroacetylation and quaternization on the polystyrene-divinylbenzene microspheres...  相似文献   

17.
The structure of Nafion‐117 perfluorosulfonate ionomer membranes was investigated with small‐angle neutron scattering techniques. Structural changes induced by the swelling of the membranes with water, alcohols, and dipolar, aprotic solvents were monitored at solvent‐swelling levels ranging from approximately 2 vol % to greater than 50 vol %. Membranes swollen up to approximately 50 vol % solvent exhibited two scattering maxima, one known to be associated with ionic regions of the membrane structure and one known to be associated with correlation distances between crystalline regions in the membrane structure. The positions of both maxima shifted toward lower scattering vector values as the solvent content in the membrane increased. The shift in the position of both maxima was linearly related to the solvent volume fraction in the membrane. The Bragg spacings corresponding to both the ionic‐feature scattering maximum and the crystalline‐feature scattering maximum were plotted versus the solvent volume fraction in the membranes, and the data fit with linear regression. The slopes associated with the curves of the spacing versus the solvent volume fraction were greater for the crystalline‐feature spacing than for the ionic‐feature spacing for all solvents other than water; this was indicative of preferential segregation of nonaqueous solvents into regions of the structure not directly associated with the ionic scattering maximum. © 2002 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 387–400, 2002; DOI 10.1002/polb.10092  相似文献   

18.
A fluorinated aromatic polyanhydride ( B ) was synthesized from the melt condensation of mixed anhydrides of 4,4′‐(hexafluoroisopropylidene)bis benzoic acid. Although the mixed anhydride from acetic anhydride yielded only a mixture of oligomers (weight‐average molecular weight < 2000), higher weight‐average molecular weight materials in the range of 15,000–18,000 were obtained with trifluoroacetic anhydride. Polymer B was soluble in chloroform and tetrahydrofuran, had a relatively high glass‐transition temperature of 176 °C with no melting point detected to 310 °C, and showed excellent thermal stability (5% weight loss observed at 380 °C by thermogravimetric analysis). The hydrolytic degradation of the fluorinated polyanhydride in a 0.1 M phosphate buffer of pH 7.4 at 37 °C was initially zero‐order, with 35% degradation occurring in 10 days. Loss of film integrity following that led to accelerated degradation, and almost complete dissolution was observed by the 16th day. The stability of the fluorinated polyanhydride in the solid state and in the solvent tetrahydrofuran was also evaluated. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3027–3036, 2002  相似文献   

19.
20.
Midblock‐sulfonated triblock copolymers afford a desirable opportunity to generate network‐forming amphiphilic materials that are suitable for use in a wide range of emerging technologies as fuel‐cell, water‐desalination, ion‐exchange, photovoltaic, or electroactive membranes. Employing a previously reported synthetic strategy wherein poly(ptert‐butylstyrene) remains unreactive, we have selectively sulfonated the styrenic midblock of a poly(ptert‐butylstyrene‐b‐styrene‐bptert‐butylstyrene) (TST) triblock copolymer to different extents. Comparison of the resulting sulfonated copolymers with results from our prior study provides favorable quantitative agreement and suggests that a shortened reaction time is advantageous. An ongoing challenge regarding the morphological development of charged block copolymers is the competition between microphase separation of the incompatible blocks and physical cross‐linking of ionic clusters, with the latter often hindering the former. Here, we expose the sulfonated TST copolymers to solvent‐vapor annealing to promote nanostructural refinement. The effect of such annealing on morphological characteristics, as well as on molecular free volume, is explored. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 490–497  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号