首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal stability of well‐defined hexa‐adducts (PS)6C60 in solution at temperatures around 100 °C has been studied by multi‐detector Size Exclusion Chromatography. The degradation reaction corresponds to a quantitative release of the polystyrene arms from the fullerene core through thermal cleavage of the PS‐C60 link. From the kinetics of formation of cut arms and the progressive decrease of the stars' functionality, we could establish that the reaction follows a stepwise “breaking” mechanism where a 6‐arm star is first converted to a 5‐arm star, then to a 4‐arm star, and so on down to the ungrafted arm. Furthermore, not only does the thermal stability of the PS? C60 bond increase if the functionality of the star decreases, but the difference is large enough to allow determination of the kinetics constants for the first three steps. The activation energy for the breaking of an arm‐C60 link is about 65 kJ/mol. The stability of (PS)6C60 slightly decreases with an increase of the arm length. MALDI‐TOF mass spectroscopy has shown that both C? C bonds in α and β positions to C60 can be cut, but the breaking of the direct fullerene‐arm bond is favored. We have also found that a polyisoprene? C60 bond is about seven times less stable than a PS‐fullerene link upon heating. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4820–4829, 2004  相似文献   

2.
The covalent attachment of [60] fullerene (C60) to isotactic polypropylene (i‐PP) is achieved by direct reaction in 1,2,4‐trichlorobenzene (TCB) solution in the presence of dicumyl peroxide (DCP). The chemically modified pendant C60/i‐PP polymers are soluble in chlorinated solvents and have been characterized by ultraviolet–visible and fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction, differential scanning calorimetry, cyclic voltametry, and thermogravimetric analysis. From the results it can be concluded that the modification of i‐PP by grafting via a free‐radical reaction competes with the possibility of chain scission of i‐PP due to the presence of DCP. The functionalized polymers crystallize in the monoclinic crystal modification, and have high crystallinity. The incorporation of C60 significantly enhances the thermal stability of the i‐PP. Electrochemical measurements demonstrate good electron acceptor properties of the fullerenated i‐PP samples. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6722–6733, 2008  相似文献   

3.
By grafting polystyryllithium (PSLi) or polyisoprenyllithium (PILi) onto the fullerene borne by the mono-adduct polystyrene (PS)-C60 (≈90%) obtained upon reacting the fullerene with azide-terminated PS, fairly well-defined palm-tree like polymers PSaC60(PSb)5 and block copolymers PSaC60(PI)5 could be obtained. In these architectures, 5 PS (PI) branches of equal length are connected to a PS trunk through a single fullerene molecule.  相似文献   

4.
Br‐terminated polystyrenes of controlled molar masses and low polydispersities prepared by atom transfer radical polymerization (ATRP) can be converted to macroradicals using an appropriate catalytic complex (CuBr/bipyridine/100 °C). The addition of this macroradicals PS° to 6–6 bonds of C60 follows a specific atom transfer radical addition mechanism that favors the grafting of even number of chains onto the fullerene core. This peculiar mechanism, resulting from the properties of C60, offers an easy synthetic route toward well‐defined di‐ and tetra‐adducts. In these adducts the disturbance of the electronic structure of the fullerene is kept at its minimum, as only one double bond needs to be opened on the C60 to add two PS chains and only two double bonds are converted to single bonds in the tetra‐adduct. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3456–3463, 2004  相似文献   

5.
The stereo‐electronic control over bisadditions of conjugated polymers to fullerene (C60) is explored in the formation of alternating copolymers. The chemistry, resulting configuration, and properties of poly(3‐hexylthiophene)‐alt‐C60 copolymers prepared by either classic pyrrolidine ring formation or an atom transfer radical addition are compared. Both routes result in controlled additions of polymers to C60. Extensive macromolecular modeling through PM6 methods indicate that there is no conjugation between P3HT and C60 in the systems studied. This along with 2D‐NMR, AFM, and photovoltaic characterizations of the materials indicate the importance of the structure of the modified C60 and the nature of the linking group between C60 and P3HT segments in determining the morphology of the copolymers in the solid state. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2304–2317, 2009  相似文献   

6.
The novel C60–styrene copolymers with different C60 contents were prepared in sodium naphthalene-initiated anionic polymerization reactions. Like the pure polystyrene, these copolymers exhibited the high solvency in many common organic solvents, even for the copolymer with high C60 content. In the polymerization process of C60 with styrene an important side reaction, i.e., reaction of C60 with sodium naphthalene, would occur simultaneously, whereas crosslinking reaction may be negligible. 13C-NMR results provided an evidence that C60 was incorporated covalently into the polystyrene backbone. In contrast to pure polystyrene, the TGA spectrum of copolymer containing ∼ 13% of C60 shows two plateaus. The polystyrene chain segment in copolymer decomposed first at 300–400°C. Then the fullerene units reptured from the corresponding polystyrene fragments attached directly to the C60 cores at 500–638°C. XRD evidence indicates that the degree of order of polymers increases with the fullerene content increased in terms of crystallography. Incorporation of C60 into polystyrene results in the formation of new crystal gratings or crystallization phases. In addition, it was also found that [60]fullerene and its polyanion salts [C60n(M+)n, M = Li, Na] cannot be used to initiate the anionic polymerization of some monomers such as acrylonitrile and styrene, etc.© 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2653–2663, 1998  相似文献   

7.
A novel BOPHY–fullerene C60 dyad ( BP-C60 ) was designed as a heavy-atom-free photosensitizer (PS) with potential uses in photodynamic treatment and reactive oxygen species (ROS)-mediated applications. BP-C60 consists of a BOPHY fluorophore covalently attached to a C60 moiety through a pyrrolidine ring. The BOPHY core works as a visible-light-harvesting antenna, while the fullerene C60 subunit elicits the photodynamic action. This fluorophore–fullerene cycloadduct, obtained by a straightforward synthetic route, was fully characterized and compared with its individual counterparts. The restricted rotation around the single bond connecting the BOPHY and pyrrolidine moieties led to the formation of two atropisomers. Spectroscopic, electrochemical, and computational studies disclose an efficient photoinduced energy/electron transfer process from BOPHY to fullerene C60. Photodynamic studies indicate that BP-C60 produces ROS by both photomechanisms (type I and type II). Moreover, the dyad exhibits higher ROS production efficiency than its individual constitutional components. Preliminary screening of photodynamic inactivation on bacteria models (Staphylococcus aureus and Escherichia coli) demonstrated the ability of this dyad to be used as a heavy-atom-free PS. To the best of our knowledge, this is the first time that not only a BOPHY–fullerene C60 dyad is reported, but also that a BOPHY derivative is applied to photoinactivate microorganisms. This study lays the foundations for the development of new BOPHY-based PSs with plausible applications in the medical field.  相似文献   

8.
We report the synthesis and properties of star polymers with a C5‐symmetric aromatic core. For this, corannulene‐based penta‐substituted polymerization initiators were synthesized. These initiators were then used to polymerize cyclic ester and styrenic monomers via ring opening polymerization and free radical polymerization methods, respectively. Preliminary results suggest that these novel polymers can interact with fullerene, C60, and the degree of interaction can be tuned by the chemical nature of the solvent. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
The successful synthesis is described for a donor–acceptor rod–coil block copolymer comprising blocks of poly[2,7‐(9,9‐dihexylfluorene)‐alt‐bithiophene] (F6T2) and polystyrene functionalized with fullerene (PS(C60)) (F6T2‐b‐PS(C60)). This new material was obtained by combining Suzuki polycondensation with radical addition fragmentation chain transfer. The block copolymer was characterized by nuclear magnetic resonance, gel permeation chromatography, and optical spectroscopy methods. Photophysical data for (F6T2‐b‐PS(C60)) and a related block copolymer (F6T2‐b‐PS(PCBM)) (PCBM, phenyl‐C61‐butyric acid methyl ester) are reported and their performance as compatibilizers in bulk heterojunction organic solar cells is assessed. It is demonstrated that the addition of the rod–coil block copolymers to the active layer extends the operational stability of organic photovoltaic devices. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 888–903  相似文献   

10.
Star-shaped regular homopolystyrenes with 22 arms and heteroarm polymers with 12 PS arms and 10 poly(2-vinypyridine) arms have been synthesized by consecutive coupling-functionalization-coupling reactions. The synthesis includes the following stages: the exhaustive grafting of fullerene C60 by polystyryllithium chains (living hexaadducts); the coupling of hexaadducts with the use of dimethyldichlorosilane or 1,4-dibromobutane into twelve-arm macromolecules, where the branching center is composed of two covalently bonded fullerene C60 molecules; functionalization of twelve-arm double-core PS stars during the action of excess dihalides (the replacement of lithium atoms with groups containing chlorine or bromine atoms); and the coupling of living chains of PS or poly(2-vinylpyridine) via reactions with halogen-containing groups at the branching center of double-core PS stars. Linear living polymers used as arms have been prepared by anionic polymerization. Exclusion chromatography has been used to control the individual stages of synthesis. The molecular characteristics of the PS precursor and of star-shaped polymers have been studied in terms of hydrodynamics and light scattering.  相似文献   

11.
The covalent attachment of [60]fullerene (C60) to two poly(vinyl chloride) (PVC) samples with different isotactic content is achieved by direct reaction in o‐dichlorobenzene (o‐DCB) solution in the presence of AIBN. The extent of fullerenation is controlled by varying the C60 feed ratio. The pendant C60‐chemically modified PVC polymers are soluble in tetrahydrofuran (THF) and have been characterized by UV–vis, NMR, FTIR, DSC, TGA, cyclic voltammetry, and SEM. The quantitative microstructural analysis after covalent attachment of the bulky C60 moiety to the PVC has been followed by 13C NMR spectroscopy. From the results it can be concluded that the modification of PVC by graft reaction through free radical reaction proceeds by a stereoselective mechanism. This conclusion has been confirmed on the basis of the increase of the glass‐transition temperature (Tg) and the thermal stability of the C60‐chemical modified PVC samples. The fullerenated PVCs obtained show good electron acceptor properties, as evidenced by electrochemical investigations. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5408–5419, 2007  相似文献   

12.
Monoalkynyl‐functionalized fullerene was precisely synthesized starting with pristine fullerene (C60) and characterized by multiple techniques. Methyl methacrylate and 6‐azido hexyl methacrylate were then randomly copolymerized via reversible addition fragmentation chain transfer polymerization to build polymer backbones with well‐controlled molecular weights and copolymer compositions. Finally, these two moieties were covalently assembled into a series of well‐defined side chain fullerene polymers (SFPs) via the copper‐mediated click reaction which was verified by Fourier transform infrared spectroscopy and 1H NMR. The fullerene loadings of the resultant polymers were estimated by thermogravimetric analysis and UV–vis spectroscopy, demonstrating consistent and high conversions in most of the samples. The morphology studies of the SFPs were performed both in solution and on solid substrates. Very intriguing self‐aggregation behaviors were detected by both gel permeation chromatography and dynamic light scattering analyses. Furthermore, the scanning electron microscopic images of these polymers showed the formation of various supramolecular nanoparticle assemblies and crystalline‐like clusters depending on the fullerene contents and polymer chain lengths. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3572–3582  相似文献   

13.
李化毅  刘玉军 《高分子科学》2014,32(10):1357-1362
Polypropylene samples with fullerene C60, fullerenol C60(OH)24, 1010, C60/168, C60-OH/168 and 1010/168 as antioxidants were prepared by extrusions. MFR, YI, TGA and OIT of all the samples were tested. According to the results of MFR, during the melt extrusion, fullerene showed excellent stability effect on PP. The antioxidative ability of fullerene was comparable to the traditional antioxidant 1010. The antioxidative ability of fullerenol was not significant in the first extrusion and it accelerated the degradation of PP in the second and the third extrusions. TGA and OIT tests showed that the stability effects of fullerene and fullerenol were slightly lower than antioxidant 1010. In the first time, antioxidant 168 was reported to show great synergistic effects with fullerene and fullerenol as antioxidants, which sussested a simple way to enhance the antioxidative abilities of fullerene and fullerenol.  相似文献   

14.
The products of reaction of fullerene C60 with fuming sulfuric acid were precipitated from a solution with water and triethylamine and studied by IR and ESR spectroscopies. A comparison of the obtained data with the spectra of fullerene, dimers C120 and C120O, and fullerene polymers produced by photopolymerization allowed the conclusion that fullerene polymers were formed by fullerene oxidation with fuming sulfuric acid.  相似文献   

15.
A novel synthetic strategy was developed to prepare polyphosphazenes containing C60 moieties as side chains. Thus, a new reactive macromolecular intermediate, polyphosphazene azides ( P1 ), was obtained from poly(dichlorophosphazene) by the direct nucleophilic substitution reaction. Then the azide group in P1 reacted with C60 molecules to afford the first example of C60‐containing polyphosphazenes ( P2 and P3 ). The polymers are soluble in common organic solvents. Molecular structural characterization for the polymers was presented by 1H NMR, 13C NMR, IR, ultraviolet–visible spectra, and gel permeation chromatography. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 194–199, 2004  相似文献   

16.
The anionic methods for the synthesis of homo- and heteroarm (hybrid) star-shaped polymers using fullerene C60 aPre considered. The possibilities of fullerene C60 as an agent of combination of living polymer chains and the procedures of transformation of polymer derivatives of C60 (hexaadducts) into polyfunctional macroinitiators of anionic polymerization of vinyl monomers are shown. The methods for functionalization of polymer fullerene derivatives and their combinations into structures of complex controlled architecture are presented. The structural features and initiating properties of the living polymer fullerene derivatives and their role in the formation of heteroarm star-shaped macromolecules with the controlled number of branches and predetermined molecular weight characteristics of the arms are discussed. The hydrodynamic properties of the star-shaped fullerene-containing polymers are considered. The data on the small-angle neutron scattering study of self-organization of the stars in solutions are presented.  相似文献   

17.
Linear and symmetric star block copolymers of styrene and isoprene containing [C60] fullerene were synthesized by anionic polymerization and appropriate linking postpolymerization chemistry. In all block copolymers, the C60 was connected to the terminal polyisoprene (PI) block. The composition of the copolymers was kept constant (~30% wt PI), whereas the molecular weight of the diblock chains was varied. The polymers were characterized with a number of techniques, including size exclusion chromatography, membrane osmometry, and 1H NMR spectroscopy. The combined characterization results showed that the synthetic procedures followed led to well‐defined materials. However, degradation of the fractionated star‐shaped copolymers was observed after storage for 2 months at 4 °C, whereas the nonfractionated material was stable. To further elucidate the reasons for this degradation, we prepared and studied a four‐arm star copolymer with the polystyrene part connected to C60 and a six‐arm star homopolymer of styrene. These polymers as well as linear copolymers end‐capped, through ? N<, with C60 were stable. Possible reasons are discussed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2494–2507, 2001  相似文献   

18.
Novel copolymers consisting of the alternating push–pull comonomers fluorene and thieno[3,4‐b]pyrazine/quinoxaline were synthesized by a palladium‐catalyzed Suzuki cross‐coupling reaction in 60–80% yields. The structure of the deeply colored copolymers was confirmed with 1H and 13C NMR. All the new materials were characterized with spectroscopic and electrochemical methods. Bulk heterojunction organic solar cells based on some of the novel polymers in combination with the well‐known fullerene acceptor [6,6]‐phenyl C61–butyric acid methyl ester were fabricated, and their photovoltaic parameters were measured. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6952–6961, 2006  相似文献   

19.
The electrochemically active polymers have been formed during electro-reduction carried out in solution containing fullerenes, C60 or C70, and transition metal complexes of Pd(II), Pt(II), Rh(III), and Ir(I). In these films, fullerene moieties are covalently bounded to transition metal atoms (Pd and Pt) or their complexes (Rh and Ir) to form a polymeric network. All films exhibit electrochemical activity at negative potentials due to the fullerene cages reduction process. For all studied metal complexes, yields of formation of films containing C70 are higher than yields of electrodeposition of their C60 analogs. C70 /M films also exhibit higher porosity in comparison to C60/M layers. The differences in film morphology and efficiency of polymer formation are responsible for differences in electrochemical responses of these films in acetonitrile containing supporting electrolyte only. C70/M films shows more reversible voltammeric behavior in negative potential range. They also show higher potential range of electrochemical stability. Processes of film formation and electrochemical properties of polymers depend on the transition metal ions or atoms bonding fullerene cages into polymeric network. The highest efficiency of polymerization was observed for fullerene/Pd and fullerene/Rh films. In the case of fullerene/Pd films, the charge transfer processes related to the fullerene moieties reduction in negative potential range exhibit the best reversibility among all of the studied systems. Capacitance performances of C60/Pd and C70/Pd films deposited on the porous Au/quartz electrode were also compared. Capacitance properties of both films are significantly affected by the conditions of electropolymerization. Only a fraction of the film having a direct contact with solution contributes to pseudocapacitance. Capacitance properties of these films also depend on the size of cations of supporting electrolyte. The C70/Pd film exhibits much better capacitance performance comparison to C60/Pd polymer.  相似文献   

20.
In this communication, we first used [60]fullerene as initiator to initiate the bulk polymerization of N-vinylcarbazole (NVC) monomer at 70°C (slightly higher than the melting point temperature, 65°C, of NVC). A reasonable polymerization reaction pathway via C60-NVC ion-radical pairs is suggested. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3745–3747, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号