首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The title compound, C16H14FNOS, crystallizes with Z′ = 2 in the space group P21/c. In one of the two independent molecules, the heterocyclic ring is effectively planar, but in the other molecule this ring adopts an envelope conformation. The molecules are weakly linked by two C—H...O hydrogen bonds to form C22(14) chains. Comparisons are made with some symmetrically substituted 2‐aryl‐3‐benzyl‐1,3‐thiazolidin‐4‐ones.  相似文献   

2.
A new 1,3,4‐oxadiazole‐containing bispyridyl ligand, namely 5‐(pyridin‐4‐yl)‐3‐[2‐(pyridin‐4‐yl)ethyl]‐1,3,4‐oxadiazole‐2(3H)‐thione (L), has been used to create the novel complexes tetranitratobis{μ‐5‐(pyridin‐4‐yl)‐3‐[2‐(pyridin‐4‐yl)ethyl]‐1,3,4‐oxadiazole‐2(3H)‐thione}zinc(II), [Zn2(NO3)4(C14H12N4OS)2], (I), and catena‐poly[[[dinitratocopper(II)]‐bis{μ‐5‐(pyridin‐4‐yl)‐3‐[2‐(pyridin‐4‐yl)ethyl]‐1,3,4‐oxadiazole‐2(3H)‐thione}] nitrate acetonitrile sesquisolvate dichloromethane sesquisolvate], {[Cu(NO3)(C14H12N4OS)2]NO3·1.5CH3CN·1.5CH2Cl2}n, (II). Compound (I) presents a distorted rectangular centrosymmetric Zn2L2 ring (dimensions 9.56 × 7.06 Å), where each ZnII centre lies in a {ZnN2O4} coordination environment. These binuclear zinc metallocycles are linked into a two‐dimensional network through nonclassical C—H...O hydrogen bonds. The resulting sheets lie parallel to the ac plane. Compound (II), which crystallizes as a nonmerohedral twin, is a coordination polymer with double chains of CuII centres linked by bridging L ligands, propagating parallel to the crystallographic a axis. The CuII centres adopt a distorted square‐pyramidal CuN4O coordination environment with apical O atoms. The chains in (II) are interlinked via two kinds of π–π stacking interactions along [01]. In addition, the structure of (II) contains channels parallel to the crystallographic a direction. The guest components in these channels consist of dichloromethane and acetonitrile solvent molecules and uncoordinated nitrate anions.  相似文献   

3.
In the title compounds, C10H8N2O2, (I), and C12H12N2O2, (II), the two carbonyl groups are oriented with torsion angles of −149.3 (3) and −88.55 (15)°, respectively. The single‐bond distances linking the two carbonyl groups are 1.528 (4) and 1.5298 (17) Å, respectively. In (I), the molecules are linked by an elaborate system of N—H...O hydrogen bonds, which form adjacent R22(8) and R42(8) ring motifs to generate a ladder‐like construct. Adjacent ladders are further linked by N—H...O hydrogen bonds to build a three‐dimensional network. The hydrogen bonding in (II) is far simpler, consisting of helical chains of N—H...O‐linked molecules that follow the 21 screw of the b axis. It is the presence of an elaborate hydrogen‐bonding system in the crystal structure of (I) that leads to the different torsion angle for the orientation of the two adjacent carbonyl groups from that in (II).  相似文献   

4.
In the crystal structure of (R)‐N,N‐diisopropyl‐3‐(2‐hydroxy‐5‐methyl­phenyl)‐3‐phenyl­propyl­aminium (2R,3R)‐hydrogen tartrate, C22H32NO+·C4H5O6, the hydrogen tartrate anions are linked by O—H⋯O hydrogen bonds to form helical chains built from (9) rings. These chains are linked by the tolterodine molecules via N—H⋯O and O—H⋯O hydrogen bonds to form separate sheets parallel to the (101) plane.  相似文献   

5.
The molecules of both methyl 4‐[2‐(4‐chlorobenzoyl)hydrazinyl]‐3‐nitrobenzoate, C15H12ClN3O5, (I), and methyl 4‐[2‐(2‐fluorobenzoyl)hydrazinyl]‐3‐nitrobenzoate, C15H12FN3O5, (II), contain an intramolecular N—H...O hydrogen bond, and both show electronic polarization in the nitrated aryl ring. In both compounds, molecules are linked by a combination of N—H...O and C—H...O hydrogen bonds to form sheets, which are built from R43(18) rings in (I) and from R44(28) rings in (II). In each of methyl 3‐phenyl‐1,2,4‐benzotriazine‐6‐carboxylate, C15H11N3O2, (III), and methyl 3‐(4‐methylphenyl)‐1,2,4‐benzotriazine‐6‐carboxylate, C16H13N3O2, (IV), the benzotriazine unit shows naphthalene‐type delocalization. There are no hydrogen bonds in the structures of compounds (III) and (IV), but in both compounds, the molecules are linked into chains by π–π stacking interactions involving the benzotriazine units. The mechanism of chain formation is the same in both (III) and (IV), and the different orientations of the two chains can be related to the approximate relationship between the unit‐cell metrics for (III) and (IV).  相似文献   

6.
In the title compound, C15H12N4OS2, the bond distances in the fused heterocyclic system show evidence for aromatic‐type delocalization in the pyrazole ring with some bond fixation in the triazine ring. The thiophenyl substituent is slightly disordered over two sets of atomic sites having occupancies of 0.934 (4) and 0.066 (4). The non‐H atoms in the entire molecule are nearly coplanar, with the planes of the furanyl substituent and the major orientation of the thiophenyl substituent making dihedral angles of 5.72 (17) and 1.8 (3)°, respectively, with that of the fused ring system. Molecules are linked into centrosymmetric R22(10) dimers by C—H...O hydrogen bonds and these dimers are further linked into chains by a single π–π stacking interaction. Comparisons are made with some related 4,7‐diaryl‐2‐(ethylsulfanyl)pyrazolo[1,5‐a][1,3,5]triazines which contain variously substituted aryl groups in place of the furanyl and thiophenyl substituents in the title compound.  相似文献   

7.
In the title compound, C23H22N4O, there is evidence for some bond fixation in the aryl component of the quinolinone unit. Pairs of molecules related by inversion are linked into R22(8) dimers by almost linear N—H...O hydrogen bonds, and dimers related by inversion are linked into chains by a single aromatic π–π stacking interaction.  相似文献   

8.
The title compound, C18H18N4OS2, was prepared by reaction of S,S‐diethyl 2‐thenoylimidodithiocarbonate with 5‐amino‐3‐(4‐methylphenyl)‐1H‐pyrazole using microwave irradiation under solvent‐free conditions. In the molecule, the thiophene unit is disordered over two sets of atomic sites, with occupancies of 0.814 (4) and 0.186 (4), and the bonded distances provide evidence for polarization in the acylthiourea fragment and for aromatic type delocalization in the pyrazole ring. An intramolecular N—H...O hydrogen bond is present, forming an S(6) motif, and molecules are linked by N—H...O and N—H...N hydrogen bonds to form a ribbon in which centrosymmetric R22(4) rings, built from N—H...O hydrogen bonds and flanked by inversion‐related pairs of S(6) rings, alternate with centrosymmetric R22(6) rings built from N—H...N hydrogen bonds.  相似文献   

9.
In the title compounds, C11H18N2, (II), and C13H20N2O, (III), the pyrrolidine rings have twist conformations. Compound (II) crystallizes with two independent molecules (A and B) in the asymmetric unit. The mean planes of the pyrrole and pyrrolidine rings are inclined to one another by 89.99 (11) and 89.35 (10)° in molecules A and B, respectively. In (III), the amide derivative of (II), the same dihedral angle is much smaller, at only 13.42 (10)°. In the crystal structure of (II), the individual molecules are linked via N—H...N hydrogen bonds to form inversion dimers, each with an R22(12) graph‐set motif. In the crystal structure of (III), the molecules are linked via N—H...O hydrogen bonds to form inversion dimers with an R22(16) graph‐set motif.  相似文献   

10.
The title compound, C7H7N3, is the first crystallographically characterized 1H‐pyrrolyl‐1H‐pyrazole derivative and contains two unique molecules in its asymmetric unit (Z′ = 2). These molecules associate into centrosymmetric tetramers through N—H...N hydrogen bonding, including a cyclic dimerization of one of the two unique pyrazole rings. These tetramers are linked further by two weaker N—H...π contacts to give a novel two‐dimensional (3,4)‐connected net with a (32.8)2(3.82)2 topology.  相似文献   

11.
Two isomeric pyridine‐substituted norbornenedicarboximide derivatives, namely N‐(pyridin‐2‐yl)‐exo‐norbornene‐5,6‐dicarboximide, (I), and N‐(pyridin‐3‐yl)‐exo‐norbornene‐5,6‐dicarboximide, (II), both C14H12N2O4, have been crystallized and their structures unequivocally determined by single‐crystal X‐ray diffraction. The molecules consist of norbornene moieties fused to a dicarboximide ring substituted at the N atom by either pyridin‐2‐yl or pyridin‐3‐yl in an anti configuration with respect to the double bond, thus affording exo isomers. In both compounds, the asymmetric unit consists of two independent molecules (Z′ = 2). In compound (I), the pyridine rings of the two independent molecules adopt different conformations, i.e. syn and anti, with respect to the methylene bridge. The intermolecular contacts of (I) are dominated by C—H...O interactions. In contrast, in compound (II), the pyridine rings of both molecules have an anti conformation and the two independent molecules are linked by carbonyl–carbonyl interactions, as well as by C—H...O and C—H...N contacts.  相似文献   

12.
The pyrimidine rings in ethyl (E)‐3‐[2‐amino‐4,6‐bis(dimethylamino)pyrimidin‐5‐yl]‐2‐cyanoacrylate, C14H20N6O2, (I), and 2‐[(2‐amino‐4,6‐di‐1‐piperidylpyrimidin‐5‐yl)methylene]malononitrile, C18H23N7, (II), which crystallizes with Z′ = 2 in the space group, are both nonplanar with boat conformations. The molecules of (I) are linked by a combination of N—H...N and N—H...O hydrogen bonds into chains of edge‐fused R22(8) and R44(20) rings, while the two independent molecules in (II) are linked by four N—H...N hydrogen bonds into chains of edge‐fused R22(8) and R22(20) rings. This study illustrates both the readiness with which highly‐substituted pyrimidine rings can be distorted from planarity and the significant differences between the supramolecular aggregation in two rather similar compounds.  相似文献   

13.
2‐{1‐[(4‐Chloroanilino)methylidene]ethyl}pyridinium chloride methanol solvate, C13H13ClN3+·Cl·CH3OH, (I), crystallizes as discrete cations and anions, with one molecule of methanol as solvent in the asymmetric unit. The N—C—C—N torsion angle in the cation indicates a cis conformation. The cations are located parallel to the (02) plane and are connected through hydrogen bonds by a methanol solvent molecule and a chloride anion, forming zigzag chains in the direction of the b axis. The crystal structure of 2‐{1‐[(4‐fluoroanilino)methylidene]ethyl}pyridinium chloride, C13H13FN3+·Cl, (II), contains just one anion and one cation in the asymmetric unit but no solvent. In contrast with (I), the N—C—C—N torsion angle in the cation corresponds with a trans conformation. The cations are located parallel to the (100) plane and are connected by hydrogen bonds to the chloride anions, forming zigzag chains in the direction of the b axis. In addition, the crystal packing is stabilized by weak π–π interactions between the pyridinium and benzene rings. The crystal of (II) is a nonmerohedral monoclinic twin which emulates an orthorhombic diffraction pattern. Twinning occurs via a twofold rotation about the c axis and the fractional contribution of the minor twin component refined to 0.324 (3). 2‐{1‐[(4‐Fluoroanilino)methylidene]ethyl}pyridinium chloride methanol disolvate, C13H13FN3+·Cl·2CH3OH, (III), is a pseudopolymorph of (II). It crystallizes with two anions, two cations and four molecules of methanol in the asymmetric unit. Two symmetry‐equivalent cations are connected by hydrogen bonds to a chloride anion and a methanol solvent molecule, forming a centrosymmetric dimer. A further methanol molecule is hydrogen bonded to each chloride anion. These aggregates are connected by C—H...O contacts to form infinite chains. It is remarkable that the geometric structures of two compounds having two different formula units in their asymmetric units are essentially the same.  相似文献   

14.
The molecules of N‐(3‐tert‐butyl‐1‐phenyl‐1H‐pyrazol‐5‐yl)‐2‐chloro‐N‐(4‐methoxybenzyl)acetamide, C23H26ClN3O2, are linked into a chain of edge‐fused centrosymmetric rings by a combination of one C—H...O hydrogen bond and one C—H...π(arene) hydrogen bond. In N‐(3‐tert‐butyl‐1‐phenyl‐1H‐pyrazol‐5‐yl)‐2‐chloro‐N‐(4‐chlorobenzyl)acetamide, C22H23Cl2N3O, a combination of one C—H...O hydrogen bond and two C—H...π(arene) hydrogen bonds, which utilize different aryl rings as the acceptors, link the molecules into sheets. The molecules of S‐[N‐(3‐tert‐butyl‐1‐phenyl‐1H‐pyrazol‐5‐yl)‐N‐(4‐methylbenzyl)carbamoyl]methyl O‐ethyl carbonodithioate, C26H31N3O2S2, are also linked into sheets, now by a combination of two C—H...O hydrogen bonds, both of which utilize the amide O atom as the acceptor, and two C—H...π(arene) hydrogen bonds, which utilize different aryl groups as the acceptors.  相似文献   

15.
The title compounds, C10H9N5O·H2O (L1·H2O) and C16H12N6O (L2), were synthesized by solvent‐free aldol condensation at room temperature. L1, prepared by grinding picolinaldehyde with 2,3‐diamino‐3‐isocyanoacrylonitrile in a 1:1 molar ratio, crystallized as a monohydrate. L2 was prepared by grinding picolinaldehyde with 2,3‐diamino‐3‐isocyanoacrylonitrile in a 2:1 molar ratio. By varying the conditions of crystallization it was possible to obtain two polymorphs, viz. L2‐I and L2‐II; both crystallized in the monoclinic space group P21/c. They differ in the orientation of one pyridine ring with respect to the plane of the imidazole ring. In L2‐I, this ring is oriented towards and above the imidazole ring, while in L2‐II it is rotated away from and below the imidazole ring. In all three molecules, there is a short intramolecular N—H...N contact inherent to the planarity of the systems. In L1·H2O, this involves an amino H atom and the C=N N atom, while in L2 it involves an amino H atom and an imidazole N atom. In the crystal structure of L1·H2O, there are N—H...O and O—H...O intermolecular hydrogen bonds which link the molecules to form two‐dimensional networks which stack along [001]. These networks are further linked via intermolecular N—H...N(cyano) hydrogen bonds to form an extended three‐dimensional network. In the crystal structure of L2‐I, symmetry‐related molecules are linked via N—H...N hydrogen bonds, leading to the formation of dimers centred about inversion centres. These dimers are further linked via N—H...O hydrogen bonds involving the amide group, also centred about inversion centres, to form a one‐dimensional arrangement propagating in [100]. In the crystal structure of L2‐II, the presence of intermolecular N—H...O hydrogen bonds involving the amide group results in the formation of dimers centred about inversion centres. These are linked via N—H...N hydrogen bonds involving the second amide H atom and the cyano N atom, to form two‐dimensional networks in the bc plane. In L2‐I and L2‐II, C—H...π and π–π interactions are also present.  相似文献   

16.
The asymmetric unit of the racemic form of the title compound, C12H15NOS, contains four crystallographically independent molecules. The olefinic bond connecting the 2‐thienyl and 1‐azabicyclo[2.2.2]octan‐3‐ol moieties has Z geometry. Strong hydrogen bonding occurs in a directed co‐operative O—H...O—H...O—H...O—H R44(8) pattern that influences the conformation of the molecules. Co‐operative C—H...π interactions between thienyl rings are also present. The average dihedral angle between adjacent thienyl rings is 87.09 (4)°.  相似文献   

17.
The title salt, C13H12N3+·H2PO4, contains a nonplanar 2‐(2‐aminophenyl)‐1H‐benzimidazol‐3‐ium cation and two different dihydrogen phosphate anions, both situated on twofold rotation axes in the space group C2. The anions are linked by O—H...O hydrogen bonds into chains of R22(8) rings. The anion chains are linked by the cations, via hydrogen‐bonding complementarities and electrostatic interactions, giving rise to a sheet structure with alternating rows of organic cations and inorganic anions. Comparison of this structure with that of the pure amine reveals that the two compounds generate characteristically different sheet structures. The anion–anion chain serves as a template for the assembly of the cations, suggesting a possible application in the design of solid‐state materials.  相似文献   

18.
The syntheses of a series of l‐methyl‐3‐aryl‐substituted titanocene and zirconocene dichlorides are reported. These complexes are synthesized by the reaction of 2‐ and 3‐methyl‐6, 6‐dimethylfulvenes (1:4) with aryllithium, followed by the reaction with TiCl4·2THF, ZrCl4 and (CpTiCl2)2O respectively, to give complexes 1–5. The complex [η5‐1‐methyl‐3‐(α, α‐dimethylbenzyl) cyclopentadienyl] titanium dichloride has been studied by X‐ray diffraction. The red crystal of this complex is monoclinic, space group P2t/C with unit cell parameters: a =6.973(6) × 10?1 nm, b =36.91(2) × 10?1 nm, c = 10.063(4) × 10?1 nm, α=β= γ = 93.35(5)°, V = 2584(5) × 10?3 nm3 and Z = 4. Refinement for 1004 observed reflections gives the final R of 0.088. There are four independent molecules per unit cell.  相似文献   

19.
The title compound, C6H9N2O2+·Cl·C6H8N2O2·H2O, contains one 2‐(3‐methyl‐1H‐imidazol‐3‐ium‐1‐yl)acetate inner salt molecule, one 1‐carboxymethyl‐3‐methyl‐1H‐imidazol‐3‐ium cation, one chloride ion and one water molecule. In the extended structure, chloride anions and water molecules are linked via O—H...Cl hydrogen bonds, forming an infinite one‐dimensional chain. The chloride anions are also linked by two weak C—H...Cl interactions to neighbouring methylene groups and imidazole rings. Two imidazolium moieties form a homoconjugated cation through a strong and asymmetric O—H...O hydrogen bond of 2.472 (2) Å. The IR spectrum shows a continuous D‐type absorption in the region below 1300 cm−1 and is different to that of 1‐carboxymethyl‐3‐methylimidazolium chloride [Xuan, Wang & Xue (2012). Spectrochim. Acta Part A, 96 , 436–443].  相似文献   

20.
In methyl 4‐(4‐chloroanilino)‐3‐nitrobenzoate, C14H11ClN2O4, (I), there is an intramolecular N—H...O hydrogen bond and the intramolecular distances provide evidence for electronic polarization of the o‐quinonoid type. The molecules are linked into sheets built from N—H...O, C—H...O and C—H...π(arene) hydrogen bonds, together with an aromatic π–π stacking interaction. The molecules of methyl 1‐benzyl‐2‐(4‐chlorophenyl)‐1H‐benzimidazole‐5‐carboxylate, C22H17ClN2O2, (II), are also linked into sheets, this time by a combination of C—H...π(arene) hydrogen bonds and aromatic π–π stacking interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号