首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Both 6‐(1H‐indol‐3‐yl)‐3‐methyl‐4‐(4‐methylphenyl)‐1‐phenyl‐1H‐pyrazolo[3,4‐b]pyridine‐5‐carbonitrile and 6‐(1H‐indol‐3‐yl)‐3‐methyl‐4‐(4‐methoxyphenyl)‐1‐phenyl‐1H‐pyrazolo[3,4‐b]pyridine‐5‐carbonitrile crystallize from dimethylformamide solutions as stoichiometric 1:1 solvates, viz. C29H21N5·C3H7NO, (I), and C29H21N5O·C3H7NO, (II), respectively; however, 6‐(1H‐indol‐3‐yl)‐3‐methyl‐1‐phenyl‐4‐(3,4,5‐trimethoxyphenyl)‐1H‐pyrazolo[3,4‐b]pyridine‐5‐carbonitrile, C31H25N5O3, (III), crystallizes in the unsolvated form. The heterocyclic components of (I) are linked by C—H...π(arene) hydrogen bonds to form cyclic centrosymmetric dimers, from which the solvent molecules are pendent, linked by N—H...O hydrogen bonds. In (II), the heterocyclic components are linked by a combination of C—H...N and C—H...π(arene) hydrogen bonds into chains containing two types of centrosymmetric ring, and the pendent solvent molecules are linked to these chains by N—H...O hydrogen bonds. Molecules of (III) are linked into simple C(12) chains by an N—H...O hydrogen bond, and these chains are weakly linked into pairs by an aromatic π–π stacking interaction.  相似文献   

2.
The molecules of 3‐amino‐4‐anilino‐1H‐isochromen‐1‐one, C15H12N2O2, (I), and 3‐amino‐4‐[methyl(phenyl)amino]‐1H‐isochromen‐1‐one, C16H14N2O2, (II), adopt very similar conformations, with the substituted amino group PhNR, where R = H in (I) and R = Me in (II), almost orthogonal to the adjacent heterocyclic ring. The molecules of (I) are linked into cyclic centrosymmetric dimers by pairs of N—H...O hydrogen bonds, while those of (II) are linked into complex sheets by a combination of one three‐centre N—H...(O)2 hydrogen bond, one two‐centre C—H...O hydrogen bond and two C—H...π(arene) hydrogen bonds.  相似文献   

3.
The title compounds, C10H9N5O·H2O (L1·H2O) and C16H12N6O (L2), were synthesized by solvent‐free aldol condensation at room temperature. L1, prepared by grinding picolinaldehyde with 2,3‐diamino‐3‐isocyanoacrylonitrile in a 1:1 molar ratio, crystallized as a monohydrate. L2 was prepared by grinding picolinaldehyde with 2,3‐diamino‐3‐isocyanoacrylonitrile in a 2:1 molar ratio. By varying the conditions of crystallization it was possible to obtain two polymorphs, viz. L2‐I and L2‐II; both crystallized in the monoclinic space group P21/c. They differ in the orientation of one pyridine ring with respect to the plane of the imidazole ring. In L2‐I, this ring is oriented towards and above the imidazole ring, while in L2‐II it is rotated away from and below the imidazole ring. In all three molecules, there is a short intramolecular N—H...N contact inherent to the planarity of the systems. In L1·H2O, this involves an amino H atom and the C=N N atom, while in L2 it involves an amino H atom and an imidazole N atom. In the crystal structure of L1·H2O, there are N—H...O and O—H...O intermolecular hydrogen bonds which link the molecules to form two‐dimensional networks which stack along [001]. These networks are further linked via intermolecular N—H...N(cyano) hydrogen bonds to form an extended three‐dimensional network. In the crystal structure of L2‐I, symmetry‐related molecules are linked via N—H...N hydrogen bonds, leading to the formation of dimers centred about inversion centres. These dimers are further linked via N—H...O hydrogen bonds involving the amide group, also centred about inversion centres, to form a one‐dimensional arrangement propagating in [100]. In the crystal structure of L2‐II, the presence of intermolecular N—H...O hydrogen bonds involving the amide group results in the formation of dimers centred about inversion centres. These are linked via N—H...N hydrogen bonds involving the second amide H atom and the cyano N atom, to form two‐dimensional networks in the bc plane. In L2‐I and L2‐II, C—H...π and π–π interactions are also present.  相似文献   

4.
In each of ethyl N‐{2‐amino‐5‐formyl‐6‐[methyl(phenyl)amino]pyrimidin‐4‐yl}glycinate, C16H19N5O3, (I), N‐{2‐amino‐5‐formyl‐6‐[methyl(phenyl)amino]pyrimidin‐4‐yl}glycinamide, C14H16N6O2, (II), and ethyl 3‐amino‐N‐{2‐amino‐5‐formyl‐6‐[methyl(phenyl)amino]pyrimidin‐4‐yl}propionate, C17H21N5O3, (III), the pyrimidine ring is effectively planar, but in each of methyl N‐{2‐amino‐6‐[benzyl(methyl)amino]‐5‐formylpyrimidin‐4‐yl}glycinate, C16H19N5O3, (IV), ethyl 3‐amino‐N‐{2‐amino‐6‐[benzyl(methyl)amino]‐5‐formylpyrimidin‐4‐yl}propionate, C18H23N5O3, (V), and ethyl 3‐amino‐N‐[2‐amino‐5‐formyl‐6‐(piperidin‐4‐yl)pyrimidin‐4‐yl]propionate, C15H23N5O3, (VI), the pyrimidine ring is folded into a boat conformation. The bond lengths in each of (I)–(VI) provide evidence for significant polarization of the electronic structure. The molecules of (I) are linked by paired N—H...N hydrogen bonds to form isolated dimeric aggregates, and those of (III) are linked by a combination of N—H...N and N—H...O hydrogen bonds into a chain of edge‐fused rings. In the structure of (IV), molecules are linked into sheets by means of two hydrogen bonds, both of N—H...O type, in the structure of (V) by three hydrogen bonds, two of N—H...N type and one of C—H...O type, and in the structure of (VI) by four hydrogen bonds, all of N—H...O type. Molecules of (II) are linked into a three‐dimensional framework structure by a combination of three N—H...O hydrogen bonds and one C—H...O hydrogen bond.  相似文献   

5.
The title compounds, C11H11BrO3, (I), and C11H11NO5, (II), respectively, are derivatives of 6‐hydroxy‐5,7,8‐trimethylchroman‐2‐one substituted at the 5‐position by a Br atom in (I) and by a nitro group in (II). The pyranone rings in both molecules adopt half‐chair conformations, and intramolecular O—H...Br [in (I)] and O—H...Onitro [in (II)] hydrogen bonds affect the dispositions of the hydroxy groups. Classical intermolecular O—H...O hydrogen bonds are found in both molecules but play quite dissimilar roles in the crystal structures. In (I), O—H...O hydrogen bonds form zigzag C(9) chains of molecules along the a axis. Because of the tetragonal symmetry, similar chains also form along b. In (II), however, similar contacts involving an O atom of the nitro group form inversion dimers and generate R22(12) rings. These also result in a close intermolecular O...O contact of 2.686 (4) Å. For (I), four additional C—H...O hydrogen bonds combine with π–π stacking interactions between the benzene rings to build an extensive three‐dimensional network with molecules stacked along the c axis. The packing in (II) is much simpler and centres on the inversion dimers formed through O—H...O contacts. These dimers are stacked through additional C—H...O hydrogen bonds, and further weak C—H...O interactions generate a three‐dimensional network of dimer stacks.  相似文献   

6.
In 1‐(4‐chloroanilinomethyl)‐5‐(4‐chlorophenyl)‐1,3,5‐triazinane‐2‐thione, C16H16Cl2N4S, there are two independent molecules in the asymmetric unit which form inversion dimers via two weak N—H...S hydrogen bonds. The dimers are then linked into C(9)C(14) chains by a C—H...S hydrogen bond and a C—H...Cl contact. In 1‐(anilinomethyl)‐5‐phenyl‐1,3,5‐triazinane‐2‐thione, C16H18N4S, molecules are linked into complex sheets via a combination of N—H...S and C—H...π hydrogen bonds.  相似文献   

7.
The molecules of 5‐amino‐1‐(4‐methoxybenzoyl)‐3‐methylpyrazole, C12H13N3O2, (I), and 5‐amino‐3‐methyl‐1‐(2‐nitrobenzoyl)pyrazole, C11H10N4O3, (II), both contain intramolecular N—H...O hydrogen bonds. The molecules of (I) are linked into a chain of rings by a combination of N—H...N and N—H...π(arene) hydrogen bonds, while those of (II) are linked into a three‐dimensional framework structure by N—H...N and C—H...O hydrogen bonds.  相似文献   

8.
5‐Benzylamino‐3‐tert‐butyl‐1‐phenyl‐1H‐pyrazole, C20H23N3, (I), and its 5‐[4‐(trifluoromethyl)benzyl]‐, C21H22F3N3, (III), and 5‐(4‐bromobenzyl)‐, C20H22BrN3, (V), analogues, are isomorphous in the space group C2/c, but not strictly isostructural; molecules of (I) form hydrogen‐bonded chains, while those of (III) and (V) form hydrogen‐bonded sheets, albeit with slightly different architectures. Molecules of 3‐tert‐butyl‐5‐(4‐methylbenzylamino)‐1‐phenyl‐1H‐pyrazole, C21H25N3, (II), are linked into hydrogen‐bonded dimers by a combination of N—H...π(arene) and C—H...π(arene) hydrogen bonds, while those of 3‐tert‐butyl‐5‐(4‐chlorobenzylamino)‐1‐phenyl‐1H‐pyrazole, C20H22ClN3, (IV), form hydrogen‐bonded chains of rings which are themselves linked into sheets by an aromatic π–π stacking interaction. Simple hydrogen‐bonded chains built from a single N—H...O hydrogen bond are formed in 3‐tert‐butyl‐5‐(4‐nitrobenzylamino)‐1‐phenyl‐1H‐pyrazole, C20H22N4O2, (VI), while in 3‐tert‐butyl‐5‐(3,4,5‐trimethoxybenzylamino)‐1‐phenyl‐1H‐pyrazole, C23H29N3O3, (VII), which crystallizes with Z′ = 2 in the space group P, pairs of molecules are linked into two independent centrosymmetric dimers, one generated by a three‐centre N—H...(O)2 hydrogen bond and the other by a two‐centre N—H...O hydrogen bond.  相似文献   

9.
In the title compound (systematic name: N‐anilino‐4‐nitrobenzamide), C13H11N3O3, the molecules are linked into a complex three‐dimensional framework structure by a combination of two‐centre N—H...O and C—H...O hydrogen bonds and a three‐centre N—H...(O,N) hydrogen bond.  相似文献   

10.
The molecules of 8‐methyl‐7,10‐diphenyl‐5H‐benzo[h]pyrazolo[3,4‐b]quinoline‐5,6(10H)‐dione, C27H17N3O2, (I), are weakly linked into chains by a single C—H...O hydrogen bond, and these chains are linked into sheets by a π–π stacking interaction involving pyridyl and aryl rings. In 8‐methyl‐7‐(4‐methylphenyl)‐10‐phenyl‐5H‐benzo[h]pyrazolo[3,4‐b]quinoline‐5,6(10H)‐dione, C28H19N3O2, (II), the molecules are linked into a three‐dimensional framework structure by a combination of C—H...N, C—H...O and C—H...π(arene) hydrogen bonds, together with a π–π stacking interaction analogous to that in (I).  相似文献   

11.
An efficient synthesis of 1‐arylisochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐ones, involving the diazotization of 3‐amino‐4‐arylamino‐1H‐isochromen‐1‐ones in weakly acidic solution, has been developed and the spectroscopic characterization and crystal structures of four examples are reported. The molecules of 1‐phenylisochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, C15H9N3O2, (I), are linked into sheets by a combination of C—H…N and C—H…O hydrogen bonds, while the structures of 1‐(2‐methylphenyl)isochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, C16H11N3O2, (II), and 1‐(3‐chlorophenyl)isochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, C15H8ClN3O2, (III), each contain just one hydrogen bond which links the molecules into simple chains, which are further linked into sheets by π‐stacking interactions in (II) but not in (III). In the structure of 1‐(4‐chlorophenyl)isochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, (IV), isomeric with (III), a combination of C—H…O and C—H…π(arene) hydrogen bonds links the molecules into sheets. When compound (II) was exposed to a strong acid in methanol, quantitative conversion occurred to give the ring‐opened transesterification product methyl 2‐[4‐hydroxy‐1‐(2‐methylphenyl)‐1H‐1,2,3‐triazol‐5‐yl]benzoate, C17H15N3O3, (V), where the molecules are linked by paired O—H…O hydrogen bonds to form centrosymmetric dimers.  相似文献   

12.
Molecules of 1,3‐dimethyl‐7‐(4‐methylphenyl)pyrido[2,3‐d]pyrimidine‐2,4(1H,3H)‐dione, C16H15N3O2, (I), are linked by paired C—H...O hydrogen bonds to form centrosymmetric R22(10) dimers, which are linked into chains by a single π–π stacking interaction. A single C—H...O hydrogen bond links the molecules of 7‐(biphenyl‐4‐yl)‐1,3‐dimethylpyrido[2,3‐d]pyrimidine‐2,4(1H,3H)‐dione, C21H17N3O2, (II), into C(10) chains, which are weakly linked into sheets by a π–π stacking interaction. In 7‐(4‐fluorophenyl)‐3‐methylpyrido[2,3‐d]pyrimidine‐2,4(1H,3H)‐dione, C14H10FN3O2, (III), an N—H...O hydrogen bond links the molecules into C(6) chains, which are linked into sheets by a π–π stacking interaction. The molecules of 7‐(4‐methoxyphenyl)‐3‐methylpyrido[2,3‐d]pyrimidine‐2,4(1H,3H)‐dione, C15H13N3O3, (IV), are also linked into C(6) chains by an N—H...O hydrogen bond, but here the chains are linked into sheets by a combination of two independent C—H...π(arene) hydrogen bonds.  相似文献   

13.
In O‐ethyl N‐benzoylthiocarbamate, C10H11NO2S, the molecules are linked into sheets by a combination of two‐centre N—H...O and C—H...S hydrogen bonds and a three‐centre C—H...(O,S) hydrogen bond. A combination of two‐centre N—H...O and C—H...O hydrogen bonds links the molecules of O‐ethyl N‐(4‐methylbenzoyl)thiocarbamate, C11H13NO2S, into chains of rings, which are linked into sheets by an aromatic π–π stacking interaction. In O,S‐diethyl N‐(4‐methylbenzoyl)imidothiocarbonate, C13H17NO2S, pairs of molecules are linked into centrosymmetric dimers by pairs of symmetry‐related C—H...π(arene) hydrogen bonds, while the molecules of O,S‐diethyl N‐(4‐chlorobenzoyl)imidothiocarbonate, C12H14ClNO2S, are linked by a single C—H...O hydrogen bond into simple chains, pairs of which are linked by an aromatic π–π stacking interaction to form a ladder‐type structure.  相似文献   

14.
The molecular dimensions of both 2‐amino‐6‐(N‐methylanilino)pyrimidin‐4(3H)‐one, C11H12N4O, (I), and 2‐amino‐6‐(N‐methylanilino)‐5‐nitropyrimidin‐4(3H)‐one, C11H11N5O3, (II), are consistent with considerable polarization of the molecular–electronic structures. The molecules of (I) are linked into a three‐dimensional framework by a combination of one N—H...N hydrogen bond, two independent N—H...O hydrogen bonds and one C—H...π(arene) hydrogen bond. The molecules of (II) are linked into ribbons containing three types of edge‐fused ring by the combination of two independent three‐centre N—H...(O)2 hydrogen bonds.  相似文献   

15.
2‐Amino‐5‐nitro­thia­zole crystallizes from solution in ethanol as a monosolvate, C3H3N3O2S·C2H6O, in which the thia­zole component has a strongly polarized molecular–electronic structure. The thia­zole mol­ecules are linked into centrosymmetric dimers by paired N—H⋯N hydrogen bonds [H⋯N = 2.09 Å, N⋯N = 2.960 (6) Å and N—H⋯N = 169°], and these dimers are linked by the ethanol mol­ecules, via a two‐centred N—H⋯O hydrogen bond [H⋯O = 1.98 Å, N⋯O = 2.838 (5) Å and N—H⋯O = 164°] and a planar asymmetric three‐centred O—H⋯(O)2 hydrogen bond [H⋯O = 2.07 and 2.53 Å, O⋯O = 2.900 (5) and 3.188 (5) Å, O—H⋯O = 169 and 136°, and O⋯H⋯O = 55°], into sheets built from alternating (8) and (38) rings. These sheets are triply interwoven.  相似文献   

16.
In the title compounds, 2‐methoxyethyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(1‐naphthyl)‐4H‐pyran‐3‐carboxylate, C21H20N2O4, (II), isopropyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(1‐naphthyl)‐4H‐pyran‐3‐carboxylate, C21H20N2O3, (III), and ethyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(1‐naphthyl)‐4H‐pyran‐3‐carboxylate, C20H18N2O3, (IV), the heterocyclic pyran ring adopts a flattened boat conformation. In (II) and (III), the carbonyl group and a double bond of the heterocyclic ring are mutually anti, but in (IV) they are mutually syn. The ester O atoms in (II) and (III) and the carbonyl O atom in (IV) participate in intramolecular C—H...O contacts to form six‐membered rings. The dihedral angles between the naphthalene substituent and the closest four atoms of the heterocyclic ring are 73.3 (1), 71.0 (1) and 74.3 (1)° for (II)–(IV), respectively. In all three structures, only one H atom of the NH2 group takes part in N—H...O [in (II) and (III)] or N—H...N [in (IV)] intermolecular hydrogen bonds, and chains [in (II) and (III)] or dimers [in (IV)] are formed. In (II), weak intermolecular C—H...O and C—H...N hydrogen bonds, and in (III) intermolecular C—H...O hydrogen bonds link the chains into ladders along the a axis.  相似文献   

17.
In methyl 4‐(4‐chloroanilino)‐3‐nitrobenzoate, C14H11ClN2O4, (I), there is an intramolecular N—H...O hydrogen bond and the intramolecular distances provide evidence for electronic polarization of the o‐quinonoid type. The molecules are linked into sheets built from N—H...O, C—H...O and C—H...π(arene) hydrogen bonds, together with an aromatic π–π stacking interaction. The molecules of methyl 1‐benzyl‐2‐(4‐chlorophenyl)‐1H‐benzimidazole‐5‐carboxylate, C22H17ClN2O2, (II), are also linked into sheets, this time by a combination of C—H...π(arene) hydrogen bonds and aromatic π–π stacking interactions.  相似文献   

18.
The title compound, C19H29NO, is a C17‐oxime derivative of a potent aromatase inhibitor, which surprisingly has been found to have no inhibitory power. It crystallizes with two independent molecules in the asymmetric unit. C=N—O—H...N hydrogen bonds link pairs of molecules to form dimers almost parallel to the bc plane. Cohesion of the structure is also due to another three C—H...O hydrogen bonds directed along the a axis. This hydrogen‐bonding scheme can be correlated to the almost complete loss of inhibitory power of the title compound.  相似文献   

19.
The synthesis of pharmaceutical cocrystals is a strategy to enhance the performance of active pharmaceutical ingredients (APIs) without affecting their therapeutic efficiency. The 1:1 pharmaceutical cocrystal of the antituberculosis drug pyrazinamide (PZA) and the cocrystal former p‐aminobenzoic acid (p‐ABA), C7H7NO2·C5H5N3O, (1), was synthesized successfully and characterized by relevant solid‐state characterization methods. The cocrystal crystallizes in the monoclinic space group P21/n containing one molecule of each component. Both molecules associate via intermolecular O—H...O and N—H...O hydrogen bonds [O...O = 2.6102 (15) Å and O—H...O = 168.3 (19)°; N...O = 2.9259 (18) Å and N—H...O = 167.7 (16)°] to generate a dimeric acid–amide synthon. Neighbouring dimers are linked centrosymmetrically through N—H...O interactions [N...O = 3.1201 (18) Å and N—H...O = 136.9 (14)°] to form a tetrameric assembly supplemented by C—H...N interactions [C...N = 3.5277 (19) Å and C—H...N = 147°]. Linking of these tetrameric assemblies through N—H...O [N...O = 3.3026 (19) Å and N—H...O = 143.1 (17)°], N—H...N [N...N = 3.221 (2) Å and N—H...N = 177.9 (17)°] and C—H...O [C...O = 3.5354 (18) Å and C—H...O = 152°] interactions creates the two‐dimensional packing. Recrystallization of the cocrystals from the molten state revealed the formation of 4‐(pyrazine‐2‐carboxamido)benzoic acid, C12H9N3O3, (2), through a transamidation reaction between PZA and p‐ABA. Carboxamide (2) crystallizes in the triclinic space group P with one molecule in the asymmetric unit. Molecules of (2) form a centrosymmetric dimeric homosynthon through an acid–acid O—H...O hydrogen bond [O...O = 2.666 (3) Å and O—H...O = 178 (4)°]. Neighbouring assemblies are connected centrosymmetrically via a C—H...N interaction [C...N = 3.365 (3) Å and C—H...N = 142°] engaging the pyrazine groups to generate a linear chain. Adjacent chains are connected loosely via C—H...O interactions [C...O = 3.212 (3) Å and C—H...O = 149°] to generate a two‐dimensional sheet structure. Closely associated two‐dimensional sheets in both compounds are stacked via aromatic π‐stacking interactions engaging the pyrazine and benzene rings to create a three‐dimensional multi‐stack structure.  相似文献   

20.
In the molecules of both methyl (1RS,3SR,3aRS,6aSR)‐1‐methyl‐3‐(3‐methyl‐1‐phenyl‐1H‐pyrazol‐4‐yl)‐4,6‐dioxo‐5‐phenyloctahydropyrrolo[3,4‐c]pyrrole‐1‐carboxylate, C25H24N4O4, (I), and methyl (1RS,3SR,3aRS,6aSR)‐5‐(4‐chlorophenyl)‐1‐methyl‐3‐(3‐methyl‐1‐phenyl‐1H‐pyrazol‐4‐yl)‐4,6‐dioxooctahydropyrrolo[3,4‐c]pyrrole‐1‐carboxylate, C25H23ClN4O4, (II), the two rings of the pyrrolopyrrole fragment are both nonplanar, with conformations close to half‐chair forms. The overall conformations of the molecules of (I) and (II) are very similar, apart from the orientation of the ester function. The molecules of (I) are linked into sheets by a combination of an N—H...π(pyrrole) hydrogen bond and three independent C—H...O hydrogen bonds. The molecules of (II) are also linked into sheets, which are generated by a combination of an N—H...N hydrogen bond and two independent C—H...O hydrogen bonds, weakly augmented by a C—H...π(arene) hydrogen bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号