首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The title compound, trimercury(II) bis­[selenite(IV)] selen­ate(VI), contains three crystallographically inequivalent HgII cations with coordination numbers of eight (denoted Hg1 and Hg2) and five (denoted Hg3). The corresponding coordination polyhedra around the metal atoms might be described as intermediates between a square antiprism and a triangulated dodecahedron for both Hg1 and Hg2, and a strongly distorted truncated octahedron for Hg3. [HgO8/2] layers of edge‐sharing [HgO8] polyhedra propagate parallel to the bc plane, and are connected via SeVIO4 tetrahedra and [Hg3O5] polyhedra along the a axis, forming an arrangement with channels propagating parallel to the b axis. The two independent SeIVO3 pyramids bridge the Hg atoms, and the non‐bonding orbitals of the SeIV ions protrude into the channels from opposite sides.  相似文献   

2.
The title compound, hexapotassium octairon(II,III) dodecaphosphonate, exhibiting a two‐dimensional structure, is a new mixed alkali/3d metal phosphite. It crystallizes in the space group Rm, with two crystallographically independent Fe atoms occupying sites of m (Fe1) and 3m (Fe2) symmetry. The Fe2 site is fully occupied, whereas the Fe1 site presents an occupancy factor of 0.757 (3). The three independent O atoms, one of which is disordered, are situated on a mirror and all other atoms are located on special positions with 3m symmetry. Layers of formula [Fe3(HPO3)4]2− are observed in the structure, formed by linear Fe3O12 trimer units, which contain face‐sharing FeO6 octahedra interconnected by (HPO3)2− phosphite oxoanions. The partial occupancy of the Fe1 site might be described by the formation of two [Fe(HPO3)2] layers derived from the [Fe3(HPO3)4]2− layer when the Fe1 atom is absent. Fe2+ is localized at the Fe1 and Fe2 sites of the [Fe3(HPO3)4]2− sheets, whereas Fe3+ is found at the Fe2 sites of the [Fe(HPO3)2] sheets, according to bond‐valence calculations. The K+ cations are located in the interlayer spaces, between the [Fe3(HPO3)4]2− layers, and between the [Fe3(HPO3)4]2− and [Fe(HPO3)2] layers.  相似文献   

3.
The title compound, [2,6‐bis(di‐tert‐butylphosphino)phenyl‐1κ3P,C1,P′]di‐μ‐chlorido‐1:2κ4Cl:Cl‐(2η4‐cycloocta‐2,5‐diene)hydrido‐1κH‐diiridium(I,III) hexane hemisolvate, [Ir2(C8H12)(C24H43P2)Cl2H]·0.5C6H14 or [(tBuPCP)IrH(μ2‐Cl)2Ir(COD)][tBuPCP is κ3‐2,6‐(tBu2PCH2)2C6H3 and COD is η4‐2,5‐cyclooctadiene], is an IrIII/IrI dimer bridged by two chloride ions. The Ir2Cl2 framework is nearly planar, with a dihedral angle of 13.04 (4)° between the two Ir centers. The compound was isolated as a hexane hemisolvate. A list of distances found in Ir(PCP) compounds is given.  相似文献   

4.
The title compound, hexa­ammonium tetra‐μ3‐selenido‐tetra­kis­(tri­cyano­molybdenum) hexahydrate, is isostructural with the Mo/S, W/S and W/Se analogues. The structure contains disordered cyclic hydrogen‐bonded [{(NH4)(H2O)}3]3+ cations and [Mo4Se4(CN)12]6? cluster anions with 3m symmetry. The cation assembly consists of alternating ammonium and water mol­ecules linked by N—H?O hydrogen bonds. The anion has a typical cubane cluster structure. The cations and anions are linked together by hydrogen bonds involving the terminal N atoms of the CN groups.  相似文献   

5.
Single crystals of the title complex, tris(1,6‐di­hydro‐9H‐purine‐6‐thione‐N7,S)­iron(II) tetra­chloro­ferrate(III) chloride, [Fe(C5H4N4S)3][FeCl4]Cl, were grown on the surface of solid 6‐mercaptopurine monohydrate pellets in a solution of iron(III) chloride. The solution of the hexagonal structure required the application of twin refinement techniques. All the component ions lie on threefold rotation axes. The complex contains distorted octahedral [Fe(C5H4N4S)3]2+ cations with three N7/S6‐chelating neutral 6‐mercaptopurine ligands, tetrahedral [FeCl4]? anions with a mean Fe—Cl distance of 2.189 (1) Å, and free chloride ions.  相似文献   

6.
Two new mixed‐valence iron phosphates, namely heptairon pentaphosphate hydrogen phosphate, Fe6.67(PO4)5.35(HPO4)0.65, and heptairon tetraphosphate bis(hydrogen phosphate), Fe6.23(PO4)4.45(HPO4)1.55, have been synthesized hydrothermally at 973 K and 0.1 GPa. The structures are similar to that of FeII3FeIII4(PO4)6 and are characterized by infinite chains of Fe polyhedra parallel to the [101] direction. These chains are formed by the Fe1O6 and Fe2O6 octahedra, alternating with the Fe4O5 distorted pentagonal bipyramids, according to the stacking sequence ...Fe1–Fe1–Fe4–Fe2–Fe2.... The Fe3O6 octahedra and PO4 tetrahedra connect the chains together. FeII is localized on the Fe3 and Fe4 sites, whereas FeIII is found in the Fe1 and Fe2 sites, according to bond‐valence calculations. Refined site occupancies indicate the presence of vacancies on the Fe4 site, explained by the substitution mechanism FeII + 2(PO43−) = vacancies + 2(HPO42−).  相似文献   

7.
The title compound, catena‐poly[[[bis(ethylenediamine‐κ2N,N′)platinum(II)]‐ μ‐chlorido‐[bis(ethylenediamine)platinum(IV)]‐μ‐chlorido] tetrakis{4‐[(4‐hydroxyphenyl)diazenyl]benzenesulfonate} dihydrate], {[PtIIPtIVCl2(C2H8N2)4](HOC6H4N=NC6H4SO3)4·2H2O}n, has a linear chain structure composed of square‐planar [Pt(en)2]2+ (en is ethylenediamine) and elongated octahedral trans‐[PtCl2(en)2]2+ cations stacked alternately, bridged by Cl atoms, along the b axis. The Pt atoms are located on an inversion centre, while the Cl atoms are disordered over two sites and form a zigzag ...Cl—PtIV—Cl...PtII... chain, with a PtIV—Cl bond length of 2.3140 (14) Å, an interatomic PtII...Cl distance of 3.5969 (15) Å and a PtIV—Cl...PtII angle of 170.66 (6)°. The structural parameter indicating the mixed‐valence state of the Pt atom, expressed by δ = (PtIV—Cl)/(PtII...Cl), is 0.643.  相似文献   

8.
The synthesis and characterization of a new unsymmetrical dinucleating N,O‐donor ligand, 2‐[N,N‐bis­(2‐pyridyl­methyl)­amino­methyl]‐6‐[N‐(3,5‐di‐tert‐butyl‐2‐oxidobenzyl)‐N‐(2‐pyridyl­amino)­aminomethyl]‐4‐methyl­phenol (H2Ldtb), as well as the X‐ray crystal structure of its corresponding mixed‐valence diacetate‐bridged manganese complex, di‐μ‐acetato‐μ‐{2‐[N,N‐bis­(2‐pyridylmethyl)amino­methyl]‐6‐[N‐(3,5‐di‐tert‐butyl‐2‐oxidobenzyl)‐N‐(2‐pyridyl­amino)­aminomethyl]‐4‐methylphenolato}dimanganese(II,III) tetra­phenyl­borate, [MnIIMnIII(C42H49N5O2)(C2H3O2)2](C24H20B), are reported. The complex may be regarded as an inter­esting structural model for the mixed‐valence MnII–MnIII state of manganese catalase.  相似文献   

9.
The title dinuclear di‐μ‐oxo‐bis­[(1,4,8,11‐tetra­aza­cyclo­tetra­decane‐κ4N)­manganese(III,IV)] diperchlorate nitrate complex, [Mn2O2(C10H24N4)2](ClO4)2(NO3) or [(cyclam)Mn­O]2(ClO4)2(NO3), was self‐assembled by the reaction of Mn2+ with 1,4,8,11‐tetra­aza­cyclo­tetra­decane in aqueous media. The structure of this compound consists of a centrosymmetric binuclear [(cyclam)MnO]3+ unit, two perchlorate anions and one nitrate anion. While the low‐temperature electron paramagnetic resonance spectra show a typical 16‐line signal for a di‐μ‐oxo MnIII/MnIV dimer, the magnetic susceptibility studies also confirm a characteristic antiferromagnetic coupling between the electronic spins of the MnIV and MnIII ions.  相似文献   

10.
Mixed‐valence copper(I/II) atoms have been introduced successfully into a Pb/I skeleton to obtain two heterometallic iodoplumbates, namely poly[bis(tetra‐n‐butylammonium) [bis(μ3‐dimethyldithiocarbamato)dodeca‐μ3‐iodido‐hexa‐μ2‐iodido‐tetracopper(I)copper(II)hexalead(II)]], {(C16H36N)2[Cu4ICuIIPb6(C3H6NS2)2I18]}n , (I), and poly[[μ3‐iodido‐tri‐μ2‐iodido‐iodido[bis(1,10‐phenanthroline)copper(I)]copper(I)copper(II)lead(II)] hemiiodine], {[CuICuIIPbI5(C12H8N2)2]·0.5I2}n , (II), under solution and solvothermal conditions, respectively. Compound (I) contains two‐dimensional anionic layers, which are built upon the linkages of CuII(S2CNMe2)2 units and one‐dimensional anionic Pb/I/CuI chains. Tetra‐n‐butylammonium cations are located between the anionic layers and connected to them via C—H…I hydrogen‐bonding interactions. Compound (II) exhibits a one‐dimensional neutral structure, which is composed of [PbI5] square pyramids, [CuII4] tetrahedra and [CuIIN4I] trigonal bipyramids. Face‐to‐face aromatic π–π stacking interactions between adjacent 1,10‐phenanthroline ligands stabilize the structure and assemble compound (II) into a three‐dimensional supramolecular structure. I2 molecules lie in the voids of the structure.  相似文献   

11.
The central ring of the anthrone system in the title compound, C17H14O4, has a shallow envelope conformation, and each of the two outer rings is inclined at an angle of 17.41 (3)°. In the solid state, the mol­ecules exist as centrosymmetrically related O—H⃛O hydrogen‐bonded dimers. Two intramolecular O—H⃛O hydrogen bonds, involving the central carbonyl O atom and having a graph‐set motif of S(6), are observed. These intramolecular interactions lead co‐operatively to an O—H⃛O⃛H—O pattern that has a binary graph‐set motif of (10).  相似文献   

12.
A novel mixed‐tribridged dimolybdenum(I) compound [Bn4N][Mo2(μ‐SPh)2(μ‐Cl)(CO)6] (1) has been synthesized from the reaction of Mo2(CO)3(SPh)2 with BU4NCl. Compound 1 was characterized by IR, UV‐Vis and 1H, 13C, 95Mo NMR spectroscopic analyses. The electrochemical behavior was measured by cyclic voltammetry, indicating a quasi‐reversible two‐electron transfer in one step. The crystal structure determined by X‐ray crystallography shows that 1 contains a [Mo2(μ‐S)2(μ‐Cl)]? core with a planar Mo2S2unit and a Cl bridge. The Mo? Mo distance is 0.28709(7) nm, and the Mo‐Cl‐Mo angle is 66.44(4)°. A newface‐sharing bioctahedral structure is discussed.  相似文献   

13.
The title compound, [KCr(C2O2)2(C6H8N2)]n, was obtained from aqueous solution and analyzed with single‐crystal X‐ray diffraction at 100 K. It crystallizes in the monoclinic space group C2/c and displays a three‐dimensional polymeric architecture built up by bimetallic oxalate‐bridged CrIII–K helical chains linked through centrosymmetric K2O2 units to yield a sheet‐like alternating P/M arrangement which looks like that of the previously described two‐dimensional [NaCr(ox)2(pyim)(H2O)]·2H2O [pyim is 2‐(pyridin‐2‐yl)imidazole; Lei et al. (2006). Inorg. Chem. Commun. 9 , 486–488]. The CrIII ions in each helix have the same chirality. The infinite neutral sheets are eclipsed with respect to each other and are held together by a hydrogen‐bonding network involving 2‐(aminomethyl)pyridine H atoms and oxalate O atoms. Each sheet gives rise to channels of Cr4K4 octanuclear rings and each resultant hole is occupied by a pair of 2‐(aminomethyl)pyridine ligands with partial overlap. The shortest Cr...Cr distance [5.593 (4) Å] is shorter than usually observed in the K–MIII–oxalate family.  相似文献   

14.
UV‐light irradiation induces the formation of highly mutagenic lesions in DNA, such as cis‐syn cyclobutane pyrimidine dimers (CPD photoproducts), pyrimidine(6‐4)pyrimidone photoproducts ((6‐4) photoproducts) and their Dewar valence isomers ((Dew) photoproducts). Here we describe the synthesis of defined DNA strands containing these lesions by direct irradiation. We show that all lesions are efficiently repaired except for the T(Dew)T lesion, which cannot be cleaved by the repair enzyme under our conditions. A crystal structure of a T(6‐4)C lesion containing DNA duplex in complex with the (6‐4) photolyase from Drosophila melanogaster provides insight into the molecular recognition event of a cytosine derived photolesion for the first time. In light of the previously postulated repair mechanism, which involves rearrangement of the (6‐4) lesions into strained four‐membered ring repair intermediates, it is surprising that the not rearranged T(6‐4)C lesion is observed in the active site. The structure, therefore, provides additional support for the newly postulated repair mechanism that avoids this rearrangement step and argues for a direct electron injection into the lesion as the first step of the repair reaction performed by (6‐4) DNA photolyases.  相似文献   

15.
The title compound, tetrachlorido‐1κCl;2κ3Cl‐(2,2,7,7,12,12,17,17‐octamethyl‐21,22,23,24‐tetraazapentacyclo[16.2.1.13,6.18,11.113,16]tetracosane‐1κ4N,N′,N′′,N′′′)‐μ2‐oxido‐diiron(III), [Fe2Cl4O(C28H52N4)], undergoes a slow phase transformation at ca 173 K from monoclinic space group P21/n, denoted form (I), to the maximal non‐isomorphic subgroup, triclinic space group P, denoted form (II), which is accompanied by nonmerohedral twinning [twin fractions of 0.693 (4) and 0.307 (4)]. The transformation was found to be reversible, as on raising the temperature the crystal reverted to monoclinic form (I). In the asymmetric unit of form (I), Z′ = 1, while in form (II), Z′ = 2, with a very small reduction (ca 1.8%) in the unit‐cell volume. The two independent molecules (A and B) in form (II) are related by a pseudo‐twofold screw axis along the b axis. The molecular overlay of molecule A on molecule B has an r.m.s. deviation of 0.353 Å, with the largest distance between two equivalent atoms being 1.202 Å. The reaction of calix[4]pyrrolidine, the fully reduced form of meso‐octamethylporphyrinogen, with FeCl3 gave a red–brown solid that was recrystallized from ethanol in air, resulting in the formation of the title compound. In both forms, (I) and (II), the FeIII atoms are coordinated to the macrocyclic ligand and have distorted octahedral FeN4OCl coordination spheres. These FeIII atoms lie out of the mean plane of the four N atoms, displaced towards the O atom of the [OFeCl3] unit by 0.2265 (5) Å in form (I), and by 0.2210 (14) and 0.2089 (14) Å, respectively, in the two independent molecules (A and B) of form (II). The geometry of the [OFeCl3] units are similar, with each FeIII atom having a tetrahedral coordination sphere. The NH H atoms are directed below the planes of the macrocycles and are hydrogen bonded to the coordinated Cl ions. There are also intramolecular C—H...Cl hydrogen bonds present in both (I) and (II). In form (I), there are no significant intermolecular interactions present. In form (II), the individual molecules are arranged in alternate layers parallel to the ac plane. The B molecules are linked by a C—H...Cl hydrogen bond, forming chains along [100].  相似文献   

16.
《Comptes Rendus Chimie》2014,17(12):1237-1241
In order to enhance our knowledge about the Ca10−xLax(PO4)6−x(SiO4)xF2 (0  x  6) series, whose chemical stability decreases as the substitution degree increases, Ca6La4(PO4)2(SiO4)4F2 and Ca4La6(SiO4)6F2 compounds were prepared through a solid-state reaction. Their ionic conductivity was measured by impedance spectroscopy. The results indicate that the conductivity increases with substitution, and fits the Arrhenius equation over the investigated temperature range. At high temperatures, a change in the activation energy has been observed, which has been related to the nature of the Ca/La–F bond, i.e. to the polarizability of lanthanum.  相似文献   

17.
Phase dependences in the binary system lead chlorapatite Pb10(PO4)6Cl2 — calcium fluorapatite Ca10(PO4)6F2 with special regard to polymorphic transitions of initial compounds have been examined. Phase diagram of this system over the full temperature and composition range has been provided and the occurrence of solid solutions discovered. The investigations have been carried out by the thermal, microscopic, X-ray and dilatometric analyses.
Zusammenfassung Es wurde die Phasenabhängigkeit im binären System Bleichlorapatit Pb10(PO4)6Cl2 - Calciumfluorapatit Ca10(PO4)6F2 im besonderen Hinblick auf polymorphe Übergänge der Ausgangsverbindungen untersucht. Das Phasendiagramm dieses Systemes wurde im gesamten Temperatur- und Konzentrationsbereich erstellt und die Existenz von Mischkristallen entdeckt. Die Untersuchungen wurden mittels Thermo-, mikroskopischer, röntgenographischer und dilatometrischer Analyse durchgeführt.


The author would like to thank Prof. J. Berak for his help and support, and Prof. T. Znamierowska for advice.  相似文献   

18.
In penta­carbonyl(4‐phenyl­pyridine)­tungsten(0), [W­(C11H9N)(CO)5], the mol­ecules have mm site symmetry and the pyridine ligand, with m symmetry, is completely planar. In penta­carbonyl(2‐phenyl­pyridine)­chromium(0), [Cr(C11­H9N)(CO)5], the mol­ecules are in general positions and the phenyl and pyridine rings of the ligand are twisted by 67.7 (3)° with respect to one another by rotation about the C—C bond joining them. In both compounds, the axial M—Ccarbonyl bond trans to the M—Nligand bond is significantly shorter than the equatorial M—Ccarbonyl bonds.  相似文献   

19.
A new one‐dimensional platinum mixed‐valence complex with nonhalogen bridging ligands, namely catena‐poly[[[bis(ethane‐1,2‐diamine‐κ2N,N′)platinum(II)]‐μ‐thiocyanato‐κ2S:S‐[bis(ethane‐1,2‐diamine‐κ2N,N′)platinum(IV)]‐μ‐thiocyanato‐κ2S:S] tetrakis(perchlorate)], {[Pt2(SCN)2(C2H8N2)4](ClO4)4}n, has been isolated. The PtII and PtIV atoms are located on centres of inversion and are stacked alternately, linked by the S atoms of the thiocyanate ligands, forming an infinite one‐dimensional chain. The PtIV—S and PtII...S distances are 2.3933 (10) and 3.4705 (10) Å, respectively, and the PtIV—S...PtII angle is 171.97 (4)°. The introduction of nonhalogen atoms as bridging ligands in this complex extends the chemical modifications possible for controlling the amplitude of the charge‐density wave (CDW) state in one‐dimensional mixed‐valence complexes. The structure of a discrete PtIV thiocyanate compound, bis(ethane‐1,2‐diamine‐κ2N,N′)bis(thiocyanato‐κS)platinum(IV) bis(perchlorate) 1.5‐hydrate, [Pt(SCN)2(C4H8N2)2](ClO4)2·1.5H2O, has monoclinic (C2) symmetry. Two S‐bound thiocyanate ligands are located in trans positions, with an S—Pt—S angle of 177.56 (3)°.  相似文献   

20.
The title compound, lithium aluminium silicide (15/3/6), crystallizes in the hexagonal centrosymmetric space group P63/m. The three‐dimensional structure of this ternary compound may be depicted as two interpenetrating lattices, namely a graphite‐like Li3Al3Si6 layer and a distorted diamond‐like lithium lattice. As is commonly found for LiAl alloys, the Li and Al atoms are found to share some crystallographic sites. The diamond‐like lattice is built up of Li cations, and the graphite‐like anionic layer is composed of Si, Al and Li atoms in which Si and Al are covalently bonded [Si—Al = 2.4672 (4) Å].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号