首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A self‐made low‐frequency vibration‐assisted injection‐molding (VAIM) device was adopted to explore the relationship between mechanical property and morphology for high‐density polyethylene injected moldings. The main processing variables for the VAIM are vibration frequency and vibration pressure amplitude, and tensile properties and morphology were investigated under different VAIM processing conditions with conventional injection molding for comparison. The moldings prepared by VAIM exhibit a very well defined laminated morphology composed of a layered structure with enhanced crystallinity. Increased with vibration frequency at constant vibration pressure amplitude, the shish‐kebab structure is exhibited in the shear layer of the specimen prepared by VAIM, whereas row nucleation lamella exists in the same layer produced by enhanced vibration pressure amplitude at a constant vibration frequency. These oriented structures and enhanced crystallinity, confirmed by scanning electron microscopy, wide‐angle X‐ray diffraction, and differential scanning calorimetry, serve to obtain stronger injection moldings. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 13–21, 2005  相似文献   

2.
The morphology and structure of high molecular weight linear polyethylene (M w 450000) filled with carbon black and processed using molds that introduce an elongational flow component during injection molding has been examined using electron microscopy and x-ray diffraction techniques. The study of fracture surfaces reveals the display of shish-kebabs oriented along the injection direction with segregated longitudinal channels of carbon black particles. Molecular and lamellar changes in orientation are, furthermore, studied across the thickness of the moldings. It is shown that addition of carbon black particles to injection-molded polyethylene induces significant changes in lamellar orientation. Thus, while lamellar overgrowth proceeds perpendicular to the fiber axes within carbon free channels, lamellae grow randomly within carbon-enriched regions where flow is less pronounced.  相似文献   

3.
The investigation of the interfacial toughness of polymer layered laminar composites with two different approaches produced results differing by up to an order of magnitude and following opposite trends with respect to the strain rates. The flexural modulus and neutral axis of a constrained epoxy‐adhesive layer bound to a painted metal substrate varied with the thickness of the adhesive layer. The adhesion energy depended on the rate at which the force was transmitted to the adhesion bonds—not just on the strength of the adhesion bonds—and on the concomitant strain hardening at high strain rates. As the strain rate and thickness of the polymer layer increased, the transition from a cohesive mode to an adhesive–cohesive (polymer–polymer interface) mode of debonding led to the observed high adhesion energy. The high adhesion energy and increased strain hardening were attributed to the formation of organic–inorganic composites and nanocomposites within the polymer matrix, which evolved as a result of the interactions between the metal oxide pigments and fillers with the polymer matrix during curing. Scission of the polymer chains at the interface was proposed to be the predominant fracture mechanism; it was based on the high relaxation time (~1017 s) and the high activation energy (~175 kJ mol?1). © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3822–3835, 2004  相似文献   

4.
The structure evolution of the oriented layer (skin) and unoriented layer (core) from injection‐molded isotactic polypropylene samples upon uniaxial drawing is probed by in situ synchrotron X‐ray scattering. The X‐ray data analysis approach, called “halo method”, is used to semiquantitatively identify the transformation process of crystal phase upon uniaxial drawing. The results verify the validation of the stress‐induced crystal fragmentation and recrystallization process in the deformation of the injection‐molded samples under different temperatures. Furthermore, the end of strain softening region in the engineering stress‐strain curves explicitly corresponds to the transition point from the stress‐induced crystal fragmentation to recrystallization process. Basically, the skin and core layers of the injection‐molded parts share the similar deformation mechanism as aforementioned. The stretching temperature which dramatically affects the relative strength between the entanglement‐induced tie chains and the adjacent crystalline lamellae determines the crystal structural evolution upon drawing. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1618–1631  相似文献   

5.
Clearly knowing the structural responses of polymers to the treatment conditions is essential to regulate their final properties during industrial processing such as spinning, extrusion, injection, and blow molding. In this work, we reported the changes of hierarchical structure in poly(butylene succinate‐co‐terephthalate) (PBST) copolymer upon application of synchronous stimuli via uniaxial stretching at varying temperatures. The lamellae melting and the transition of crystal structure from α to β form in PBST copolymer always presented at the early stage of the deformation at different temperatures. The lamellae oriented to about ± (40–50)° direction as the yielding response to the stimuli. Upon further stretching, the oriented lamellae were freshly and progressively formed at high temperature, whose morphology was controllable by regulating the synchronous stimuli. Furthermore, a schematic for the structural responses to the synchronous stimuli was proposed. The structural responses of PBST copolymer under such synchronous stimuli are beneficial to tailor the final properties of the products in the form of fibers, films, plastics, and so forth, which also can provide new insights into the design and development of other copolymers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 640–649  相似文献   

6.
从注射制品形态控制和结构表征的角度探讨高分子材料加工-形态-性能之间的关系.研究中采用动态保压成型方法来制备注射样品,在注射成型过程中引入剪切应力场的作用,制得的样品表现出明显的多层次结构,从外向里分别为皮层、剪切层、芯层,表现出不同的相形态、结晶形貌以及取向行为.研究发现,剪切应力对聚烯烃的形态发展和结构变化具有重要影响.在剪切应力的作用下,聚烯烃共混物中分散相会发生变形、取向,从而导致共混物的相转变点发生移动;结晶形态从球晶转变为shish-kebab结构;聚烯烃共混物在高剪切应力下相容,低剪切下发生相分离;HDPE/PP共混物的注射制品中出现附生结晶等现象.  相似文献   

7.
This study investigates the morphology of a high‐density polyethylene processed with microinjection molding. Previous work pointed out that a “core‐free” morphology exists for a micropart (150‐μm thick), contrasting with the well‐known “skin‐core” morphology of a conventional part (1.5‐mm thick). Local analyses are now conducted in every structural layer of these samples. Transmission electron microscopy observations reveal highly oriented crystalline lamellae perpendicular to the flow direction in the micropart. Image analysis also shows that lamellae are thinner. Wide‐angle X‐ray diffraction measurements using a microfocused beam highlight that highly oriented shish–kebab morphologies are found through the micropart thickness, with corresponding orientation function close to 0.8. For the macropart, quiescent crystallized morphologies are found with few oriented structures. Finally, the morphology within the micropart is more homogeneous, but the crystalline structures created are disturbed due to the combined effects of flow‐induced crystallization and thermal crystallization during processing. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1470–1478, 2011  相似文献   

8.
In this paper, the microstructural evolution of controlled‐rheology polypropylene (CRPP) with different melt viscoelasticities was investigated by polarized optical microscopy, scanning electronic microscopy, differential scanning calorimeter, and wide‐angle X‐ray diffraction. It is found that a typical “skin‐core” structure formed in CRPP microparts and the thickness of oriented layer of CRPP microparts decreases notably with the addition of peroxide. The thickness of oriented layer and the distribution of different layers strongly depend on the melt flow properties and the corresponding relaxation time (λ). Furthermore, the mechanisms of the suppressed formation of oriented layers during the micro‐injection molding process are discussed mainly from the viewpoint of rheology and thermodynamics. It is revealed that the shear‐induced orientation is one of the key factors for the formation of oriented molecular structure (row nuclei). The final thickness of the oriented layer is the result of the competition between the orientation behavior and the disorientation behavior. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The morphological feature of microparts evolved during micro‐injection molding may differ from that of the macroparts prepared by conventional injection molding, resulting in specific physical properties. In this study, isotactic polypropylene (iPP) microparts with 200 µm thickness and macroparts with 2000 µm thickness were prepared, and their morphological comparison was investigated by means of polarized light microscopy (PLM), scanning electron microscopy (SEM), differential scanning calorimeter (DSC), and wide‐angle X‐ray diffraction (WAXD). The results presented some similarities and differences. PLM observations showed that the through‐the thickness‐morphology of micropart exhibited a similar “skin–core” structure as macropart, but presented a large fraction of shear layer in comparison to the macropart which presented a large fraction of core layer. The SEM observation of shear layer of micropart featured highly oriented shish‐kebab structure. The micropart had a more homogeneous distribution of lamellae thickness. The degree of crystallinity of the micropart was found to be higher than that of the macropart. High content of β‐crystal was found in micropart. The 2D WAXD pattern of the core layer of macropart showed full Debye rings indicating a random orientation, while the arcing of the shear layer indicates a pronounced orientation. The most pronounced arcing of the micropart indicates the most pronounced orientation of iPP chains within lamellae. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
The hierarchical crystalline morphologies and orientation structures across the thickness direction in high-density polyethylene(HDPE) molded bars were investigated via a novel melt-penetrating processing method named multi-melt multi-injection molding(M3IM). The samples with various mold temperatures(20, 40 and 60 °C) were prepared, and the effects of the external temperature profile on the evolution of crystalline microstructures were studied. With scanning electron microscopy(SEM), the transition of crystalline morphology from ring-banded structure to oriented lamellae was observed with decreasing mold temperature, and the oriented lamellae were formed at the sub-skin layer of the samples at the lowest mold temperature, which was further testified by differential scanning calorimetry(DSC). With the decline of mold temperature, the degree of orientation, obtained from two-dimensional small angle X-ray scattering(2D-SAXS), was increased and long periods rose a little. Thus, decreasing mold temperature was beneficial to the formation of orientation structures because the relaxation of chains was weakened.  相似文献   

11.
The polypropylene/halloysite nanotubes (PP/HNTs) nanocomposites were prepared via water-assisted injection molding (WAIM) and compression molding (CM). HNTs were highly oriented in WAIM parts due to the strong shear effect; whereas HNTs were randomly oriented in the CM one. The orientation of HNTs had little influence on their nucleating efficiency for the PP. However, the HNTs selectively induced α-form crystal at high cooling rates; whereas they showed β-nucleating activity at low cooling rates. Thermal analyses revealed that the HNTs delayed thermal degradation onset in the initial degradation stage, whereas they sped up the thermal degradation in the main volatilization stage at the contents of 5 and 8 wt%. The simultaneous thermogravimetric analyses and differential scanning calorimetry measurements revealed that, at a low content, the direct stabilizing effect of HNTs on PP contributed largely to the increased thermal stability of the WAIM PP/HNTs nanocomposites rather than their barrier and entrapment effect on the volatile products.  相似文献   

12.
The objective of the present work was to examine the development of crystalline orientation and texture in the polypropylene matrix of talc‐filled i‐PP and in unfilled i‐PP with increasing draw ratio during solid‐phase die‐drawing at high strain rates (~1 s?1) and a die temperature of 145 °C. After drawing, the entire billet was cooled rapidly “under tension” to room temperature before releasing the billet and cutting specimens from different axial locations for analysis. Orientation distributions of the three crystal axes for increasing axial strains have been presented as pole figures in the MD‐TD plane with the direction of draw (MD) as the reference direction. While disruption of spherulites was noticed within the die for neat PP at a draw ratio of 1.5, transcrystalline domains within the composite persisted even at a draw ratio of 3.5 in the free draw region outside the die. The transformation to fibrillar crystal morphology was complete in both materials at a draw ratio of 4.5 but the texture continued to develop beyond this stage. While the (110)[001] texture component was found to be dominant at all draw ratios for neat PP, the (010)[001] texture component was dominant at the higher draw ratios in the drawn composite. This may be attributed to the (010)[001] slip system being more active as the transverse spacing between elongated voids encasing the particles was decreased. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1528–1538  相似文献   

13.
Water assisted injection molding (WAIM) has gradually become one of the most important polymer processing methods for making hollowed parts. This study examined the morphological development in water assisted injection molded high density polyethylene (HDPE)/polyamide‐6 (PA‐6) blends. Samples for microscopic observation were prepared by an 80‐ton injection‐molding machine equipped with a tube cavity and with a water injection unit. A distinct skin layer, core region, and channel layer were observed across the thickness. The shape and size of the dispersed phase depended on the position both across the part thickness and along the flow direction. Small and large particles coexisted in the skin and channel layers, indicating that both coalescence and disintegration of the dispersed phase occurred in these layers. High water pressures were found to mold parts with smaller polyamide particle distributions. Additionally, the morphology of water assisted injection molded parts was compared to that of gas assisted injection molded products. It was found that water molded parts exhibit a smaller polyamide particle distribution than their gas counterparts. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
利用自行研制的低频振动注射实验装置探讨HDPE振动注射试样力学性能和微观形态之间的关系 .实验中对常规注射和振动注射成型的试样力学性能和微观形态进行了对比实验 .SEM实验结果显示 ,振动注射制件芯层的形态由常规注射的球晶转变为垂直于振动波传递方向排列的片晶结构 ,在剪切层中同时存在串晶或柱状堆砌的片晶结构 .频率的改变 (0 相似文献   

15.
The effects of molecular characteristics and processing conditions on melt‐drawing behavior of ultrahigh molecular weight polyethylene (UHMW‐PE) are discussed, based on a combination of in situ X‐ray measurement and stress–strain behavior. The sample films of metallocene‐ and Ziegler‐catalyzed UHMW‐PEs with a similar viscosity average MW of ~107 were prepared by compression molding at 180 °C. Stress profiles recorded at 160 °C above the melting temperature of 135 °C exhibited a plateau stress region for both films. The relative change in the intensities of the amorphous scattering recorded on the equator and on the meridian indicated the orientation of amorphous chains along the draw axis with increasing strain. However, there was a substantial difference in the subsequent crystallization into the hexagonal phase, reflecting the molecular characteristics, that is, MW distribution of each sample film. Rapid crystallization into the hexagonal phase occurred at the beginning point of the plateau stress region in melt‐drawing for metallocene‐catalyzed UHMW‐PE film. In contrast, gradual crystallization into the hexagonal phase occurred at the middle point of the plateau stress region for the Ziegler‐catalyzed film, suggesting an ease of chain slippage during drawing. These results demonstrate that the difference in the MW distribution due to the polymerization catalyst system dominates the phase development mechanism during melt‐drawing. The effect of the processing conditions, that is, the including strain rate and drawing temperature, on the melt‐drawing behavior is also discussed. The obtained results indicate that the traditional temperature–strain rate relationship is effective for transient crystallization in to the hexagonal phase during melt‐drawing, as well as for typically oriented crystallization during ultradrawing in the solid state. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2455–2467, 2006  相似文献   

16.
张杰 《高分子科学》2016,34(12):1479-1489
High density polyethylene (HDPE) with moderate content of crosslink network (CPE) was successfully prepared through chemical method. Specimens for structural characterization have been molded by conventional injection molding (CIM) and pressure vibration injection molding (PVIM). Influence of crosslink network on hierarchical morphology distribution and mechanical properties was systematically studied. Polarized light microscopy (PLM) revealed that both CIM and PVIM PE samples have a typical “skin-core” structure and the thickness of shear layer of CIM PE and PVIM CPE samples obviously increase. Scanning electron microscopy (SEM) showed that shish-kebab structures are clearly observed in shear layer of CIM CPE sample, indicating that the crosslink network can surely improve the formation of shish-kebab structures. Moreover, we suppose that shish-kebab structures emerged in shear and core layer of PVIM CPE sample. Wideangle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) confirmed that more orientation and shish-kebab structures form even in core layer of PVIM CPE sample, which demonstrated that the hierarchical morphology was apparently altered by periodical shear and crosslink network. Finally, the mechanical properties revealed that this oriented structure increase the tensile strength from 31 MPa of CIM PE sample to 46 MPa of PVIM CPE sample. However, the tensile behavior tended to change from ductile fracture to brittle fracture.  相似文献   

17.
The microstructure and molecular orientation distribution over both the length and the thickness of microinjection‐molded linear low‐density polyethylene with a weld line were characterized as a function of processing parameters using small‐angle X‐ray scattering and wide‐angle X‐ray diffraction techniques. The weld line was introduced via recombination of two separated melt streams with an angle of 180° to each other in injection molding. The lamellar structure was found to be related to the mold temperature strongly but the injection velocity and the melt temperature slightly. Furthermore, the distributions of molecular orientation at different molding conditions and different positions in the cross section of molded samples were derived from Hermans equation. The degree of orientation of polymeric chains and the thickness of oriented layers decrease considerably with an increase of both mold temperature and melt temperature, which could be explained by the stress relaxation of sheared chains and the reduced melt viscosity, respectively. The level of molecular orientation was found to be lowest in the weld line when varying injection velocity, mold temperature, and melt temperature, thus providing an effective means to identify the position of weld line induced by flow obstacles during injection‐molding process. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1705–1715  相似文献   

18.
The hierarchy structures and orientation behavior of high-density polyethylene (HDPE) molded by conventional injection molding (CIM) and gas-assisted injection molding (GAIM) were intensively examined by using scanning electronic microscopy (SEM) and 2D wide-angle X-ray diffraction (2D-WAXD). Results show that the spatial variation of crystals across the thickness of sample molded by CIM was characterized by a typical skin–core structure as a result of general shear-induced crystallization. Unusually, the crystalline morphologies of the parts prepared by GAIM, primarily due to the penetration of secondary high-compressed gas that was exerted on the polymer melt during gas injection, featured a richer and fascinating supermolecular structure. Besides, the oriented lamellar structure, general shish–kebab structure, and common spherulites existed in the skin, sub-skin, and gas channel region, respectively; a novel morphology of shish–kebab structure was seen in the sub-skin layer of the GAIM parts of HDPE. This special shish–kebab structure (recognized as “bending shish–kebab”) was neither parallel nor perpendicular to the flow direction but at an angle. Furthermore, there was a clear interface between the bending and the normal shish–kebab structures, which may be very significant for our understanding of the melt flow or polymer rheology under the coupling effect of multi-fluid flow and complex temperature profiles in the GAIM process. Based on experimental observations, a schematic illustration was proposed to interpret the formation mechanism of the bending shish–kebab structure during GAIM process.  相似文献   

19.
In order to promote better understanding of the structure‐mechanical properties relationships of filled thermoplastic compounds, the molecular orientation and the degree of crystallinity of injection molded talc‐filled isotactic polypropylene (PP) composites were investigated by X‐ray pole figures and wide‐angle X‐ray diffraction (WAXD). The usual orientation of the filler particles, where the plate planes of talc particles are oriented parallel to the surface of injection molding and influence the orientation of the α‐PP crystallites was observed. The PP crystallites show bimodal orientation in which the c‐ and a*‐axes are mixed oriented to the longitudinal direction (LD) and the b‐axis is oriented to the normal direction (ND). It was found that the preferential b‐axis orientation of PP crystallites increases significantly in the presence of talc particles up to 20 wt% in the composites and then levels‐off at higher filler content. WAXD measurements of the degree of crystallinity through the thickness of injection molded PP/talc composites indicated an increasing gradient of PP matrix crystallinity content from the core to the skin layers of the molded plaques. Also, the bulk PP crystallinity content of the composites, as determined by DSC measurements, increased with talc filler concentration. The bulk crystallinity content of PP matrix and the orientation behavior of the matrix PP crystallites and that of the talc particles in composites are influenced by the presence of the filler content and these three composite's microstructure modification factors influence significantly the flexural moduli and the mechanical stiffness anisotropy data (ELD/ETD) of the analyzed PP/talc composites. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
A unique in situ multiaxial deformation device has been designed and built specifically for simultaneous synchrotron small angle X‐ray scattering (SAXS) and wide angle X‐ray scattering (WAXS) measurements. SAXS and WAXS patterns of high‐density polyethylene (HDPE) and HDPE/clay nanocomposites were measured in real time during in situ multiaxial deformation at room temperature and at 55 °C. It was observed that the morphological evolution of polyethylene is affected by the existence of clay platelets as well as the deformation temperature and strain rate. Martensitic transformation of orthorhombic into monoclinic crystal phases was observed under strain in HDPE, which is delayed and hindered in the presence of clay nanoplatelets. From the SAXS measurements, it was observed that the thickness of the interlamellar amorphous region increased with increasing strain, which is due to elongation of the amorphous chains. The increase in amorphous layer thickness is slightly higher for the nanocomposites compared to the neat polymer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号