首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The design rationale, synthesis, and preliminary radiolabeling evaluation of new N,N,O-type pyridyl- tert-nitrogen-phenol ligands for the [M(CO) 3] (+) core, where M = (99m)Tc or Re, are described. The capability of the ligands to bind this technetium core is initially demonstrated by using the cold surrogate [Re(CO) 3] (+). NMR studies of the relevant rhenium tricarbonyl complexes indicate the formation of either a monomeric or a possible dimeric complex with each phenolic O atom bridging between two metal centers. Labeling with [ (99m)Tc(CO) 3] (+) provided further insight into the differences in complex formation on the dilute, no carrier added, level compared to the macroscopic scale at which the Re (I) counterparts were made. These new tridentate, monoanionic ligands are competent chelates in binding the [ (99m)Tc(CO) 3] (+) core because radiolabeling yields ranged from 85 to 99% and the resulting complexes were stable to cysteine and histidine challenges for as long as 24 h.  相似文献   

2.
Magnetite-filled micelles capture fac-[M(OH(2))(3)(CO)(3)](+) complexes (M = (99m)Tc, Re), creating versatile self-assembled constructs for multimodal SPECT/MR/optical imaging and radiopharmaceutical guided delivery.  相似文献   

3.
The synthesis and characterization of three neutral tricarbonyl fac-M(CO)3(NNO) (M = Re, (99m)Tc) complexes based on the picolylamine N,N-diacetic acid (PADA) ligand is reported. One of the two carboxylate groups of the PADA ligand is efficiently and conveniently derivatized with an amine nucleophile through the use of the PADA anhydride. In this work, aniline, benzylamine and pyrrolidine were used as model amine nucleophiles. The rhenium complexes were synthesized using the [NEt4]2[Re(CO)3Br3] precursor and fully characterized by elemental analysis, spectroscopic methods, and X-ray crystallography. The analogous technetium-99m complexes were also prepared quantitatively using the [(99m)Tc(CO)3(H2O)3](+) precursor. The reaction scheme presented for the synthesis of the fac-M(CO)3(NNO) (M = Re, (99m)Tc) complexes can be applied to the development of target-specific radiopharmaceuticals because, in principle, any bioactive pharmacophore bearing an amine group can be used in the place of the model amine nucleophiles.  相似文献   

4.
Facile reactivity of hydrazides and aldehydes was explored as potential coupling partners for incorporation into M(CO)(3) (M = Re, (99m)Tc) based radiopharmaceuticals. Both 'click, then chelate' and 'prelabel, then click' synthetic routes produced identical products in high yields and lacked metal-hydrazide/-hydrazone interactions, highlighting the potential of this click strategy.  相似文献   

5.
A new and high yielding method for the synthesis of [M(CO)(3)(eta(5)-2,3-C(2)B(9)H(11))](-) and the bifunctional metal complexes, rac-[M(CO)(3)(eta(5)-2-R-2,3-C(2)B(9)H(10))](-) (R = CH(2)CH(2)CO(2)H), from [M(CO)(3)Br(3)](2)(-) (M = Re, (99)Tc) was developed. The general approach entailed the addition of nido-[(C(2)B(9)H(12))(-)], or the acid substituted analogue, to [M(CO)(3)Br(3)](2)(-) (M = Re, (99)Tc) in the presence of TlOEt in THF. It was also possible to prepare the reported products in water using sodium carbonate in place of TlOEt. The reported approach led to the preparation, and X-ray crystallographic structure determination, of the first Tc-carborane complex reported to date (a = 13.606(17) A, b = 10.685(13) A, c = 15.534(16) A, alpha = gamma = 90 degrees, beta = 111.84(2) degrees). Because of the stabilities of the metal complexes, and the fact that the compounds can be prepared in water, the bifunctional derivatives can be considered as novel synthons for the preparation of organometallic (99m)Tc and (186/188)Re radiopharmaceuticals.  相似文献   

6.
Reduction-substitution reactions of [M(O)Cl(4)](-)(M=Re, (99)Tc) precursors with an excess of substituted dithiobenzoate ligands (R-PhCS(2))(-) in dichloromethane/methanol mixtures afford a series of six-coordinated neutral mixed-ligand complexes of the type M(III)(R-PhCS(3))(2)(R-PhCS(2))(M=Re; Rel--9; M=99)Tc; Tel--9). The coordination sphere is entirely filled by sulfur donor atoms, and the complexes adopt a distorted trigonal prismatic arrangement, as assessed by the X-ray crystal structure analysis of Re(4-Me-PhCS(3))(2)(4-Me-PhCS(2)), Re 2. These compounds show sharp proton and carbon NMR profiles, in agreement with the diamagnetism typical of low spin d(4) trigonal prismatic configurations. The red-ox processes involve reduction of the metal from Re(v) to Re(iii) and oxidation of dithiobenzoate to trithioperoxybenzoate. M2--9 complexes contain a substitution-inert [M(R-PhCS(3))(2)](+) moiety including the metal and two trithioperoxybenzoate fragments, while the third dithiobenzoate ligand is labile. The latter is efficiently replaced by reaction with better nucleophiles such as diethyldithiocarbamate giving a further class of mixed ligand complexes of the type M(III)(R-PhCS(3))(2)(Et(2)NCS(2))(M=Re; Re 10--18; M=(99)Tc; Tc--18), which retain the trigonal prismatic arrangement, as determined by the X-ray analyses of the representative compounds Re(PhCS(3))(2)(Et(2)NCS(2)), Re 10 and (99)Tc(PhCS(3))(2)(Et(2)NCS(2)), Tc 10.  相似文献   

7.
N-(2-Mercaptoethyl)picolylamine (MEPAH) was studied as a potentially biologically relevant ligand for the "fac-[M(CO)(3)](+)" core (M = Re, (99)Tc, (99m)Tc). To this end, the complex Re(CO)(3)(MEPA) was synthesized. The reaction of MEPAH with fac-[Re(CO)(3)(MeCN)(3)](+) took place over the course of seconds, showing the high affinity possessed by this ligand for the "fac-[Re(CO)(3)](+)" core. A single-crystal X-ray diffraction study was performed confirming the nature of Re(CO)(3)(MEPA), a rare mononuclear rhenium(I) thiolate complex. Additional exploration into derivatization of the ligand backbone has afforded the analogous N-ethyl complex, Re(CO)(3)(MEPA-NEt). The high affinity of the ligand for the metal coupled with the ease of its derivatization implies that utilization of this ligand system for the purposes of (99m)Tc-radiopharmaceutical development is promising.  相似文献   

8.
By analogy to the recently described single amino acid chelate (SAAC) technology for complexation of the {M(CO)3}+ core (M = Tc, Re), a series of tridentate ligands containing thiolate and thioether groups, as well as amino and pyridyl nitrogen donors, have been prepared: (NC5H4CH2)2NCH2CH2SEt (L1); (NC5H4CH2)2NCH2CH2SH (L2); NC5H4CH2N(CH2CH2SH)2 (L3); (NC5H4CH2)N(CH2CH2SH)(CH2CO2R) [R = H (L4); R = -C2H5 (L5). The {Re(CO)3}+ core complexes of L1-L5 were prepared by the reaction of [Re(CO)3(H2O)3]Br or [NEt4]2[Re(CO)3Br3] with the appropriate ligand in methanol and characterized by infrared spectroscopy, 1H and 13C NMR spectroscopy, mass spectrometry, and in the case of [Re(CO)3(L2)] (Re-2) and [Re(CO)3(L1)Re(CO)3Br2] (Re-1a) by X-ray crystallography. The structure of Re-2 consists of discrete neutral monomers with a fac-Re(CO)3 coordination unit and the remaining coordination sites occupied by the amine, pyridyl, and thiolate donors of L2, leaving a pendant pyridyl arm. In contrast, the structure of Re-1a consists of discrete binuclear units, constructed from a {Re(CO)3(L1)}+ subunit linked to a {Re(CO)3Br2}- group through the sulfur donor of the pendant thioether arm. The series of complexes establishes that thiolate donors are effective ligands for the {M(CO)3}+ core and that a qualitative ordering of the coordination preferences of the core may be proposed: pyridyl nitrogen approximately thiolate > carboxylate > thioether sulfur > thiophene sulfur. The ligands L1 and L2 react cleanly with [99mTc(CO)3(H2O)3]+ in H2O/DMSO to give [99mTc(CO)3(L1)]+ (99m)Tc-1) and [99mTc(CO)3(L2)] (99mTc-2), respectively, in ca. 90% yield after HPLC purification. The Tc analogues 99mTc-1 and 99mTc-2 were subjected to ligand challenges by incubating each in the presence of 1000-fold excesses of both cysteine and histidine. The radiochromatograms showed greater than 95% recovery of the complexes.  相似文献   

9.
Receptor-specific nuclear targeting requires trifunctional metal complexes. We have synthesized [M(L(2)-pept)(L(1)-acr)(CO)(3)] (pept=peptide; acr=acridine-based agent) in which the fac-[M(CO)(3)](+) moiety (1st function, M=(99m)Tc, Re) couples an acridine-based nuclear-targeting agent (2nd function, L(1)-acr) and the specific cell-receptor-binding peptide bombesin (3rd function, L(2)-pept). The metal-mediated coupling is based on the mixed ligand [2+1] principle. The nuclear targeting agents have been derivatised with an isocyanide group for monodentate (L(1)) and bombesin (BBN) with a bidentate ligand (L(2)) for complexation to fac-[M(CO)(3)](+). For nuclear uptake studies, the model complexes [Re(L(2))(L(1)-acr)(CO)(3)] (L(2)=pyridine-2-carboxylic acid and pyridine-2,4-dicarboxylic acid) were synthesized and structurally characterized. We selected acridine derivatives as nuclear-targeting agents, because they are very good nucleus-staining agents and exhibit strong fluorescence. Despite the bulky metal complexes attached to acridine, all [Re(L(2))(L(1)-acr)(CO)(3)] showed high accumulation in the nuclei of PC3 and B16F1 cells, as evidenced by fluorescence microscopy. For radiopharmaceutical purposes, the (99m)Tc analogues have been prepared and radioactivity distribution confirmed the fluorescence results. Coupling of BBN to L(2) gave the receptor-selective complexes [M(L(2)-BBN)(L(1)-acr)(CO)(3)]. Whereas no internalization was found with B16F1 cells, fluorescence microscopy on PC3 cells bearing the BBN receptor showed high and rapid uptake by receptor-mediated endocytosis into the cytoplasm, but not into the nucleus.  相似文献   

10.
To study the interaction of the fac-[M(CO)(3)](+) moiety (M = (99m)Tc, (188)Re) with DNA bases, we reacted [M(OH(2))(3)(CO)(3)](+) with 9-methylguanine (9-MeG), guanosine (G), and 2-deoxyguanosine (2dG). Two bases bind to the metal center via the N7 atoms. X-ray structure analysis of [(99)Tc(CH(3)OH)(9-MeG)(2)(CO)(3)](+) (4) (monoclinic, I2/a, a = 28.7533(14) A, b = 8.0631(4) A, c = 32.3600(15) A, beta = 91.543(6) degrees, V = 7499.6(6) A(3), Z = 8) and [Re(OH(2))(9-MeG)(2)(CO)(3)](+) (7) (monoclinic, P2(1)/n, a = 12.2873(11) A, b = 16.0707(13) A, c = 14.1809(16) A, beta = 103.361(12) degrees, V = 2724.4(5) A(3), Z = 4) reveals that the two bases are in a head-to-tail (HT) orientation. Kinetic studies show that the rates of substitution of the purine bases are comparable to that of one of the active forms of cisplatin. The bis-substituted complexes are generally less stable than the platinum adducts, and metalation of the bases is reversible.  相似文献   

11.
The water exchange process on fac-[(CO)3Mn(H2O)3]+ and fac-[(CO)3Tc(H2O)3]+ was kinetically investigated by 17O NMR as a function of the acidity, temperature, and pressure. Up to pH 6.3 and 4.4, respectively, the exchange rate is not affected by the acidity, thus demonstrating that the contribution of the monohydroxo species fac-[(CO)3M(OH)(H2O)2] is not significant, which correlates well with a higher pKa for these complexes compared to the homologue fac-[(CO)3Re(H2O)3]+ complex. The water exchange rate K298ex/s(-1) (DeltaHex double dagger/kJ mol(-1); DeltaSex double dagger/J mol(-1) K(-1); DeltaV double dagger/cm3 mol-1) decreases down group 7 from Mn to Tc and Re: 23 (72.5; +24.4; +7.1) > 0.49 (78.3; +11.7; +3.8) > 5.4 x 10(-3) (90.3; +14.5; -). For the Mn complex only, an O exchange on the carbonyl ligand could be measured (K338co = 4.3 x 10(-6) s(-1)), which is several orders of magnitude slower than the water exchange. In the case of the Tc complex, the coupling between 17O (I = 5/2) and 99Tc (I = 9/2) nuclear spins has been observed (1J99Tc,17O = 80 +/- 5 Hz). The substitution of water in fac-[(CO)3M(H2O)3]+ by dimethyl sulfide (DMS) is slightly faster than that by CH3CN: 3 times faster for Mn, 1.5 times faster for Tc, and 1.2 times faster for Re. The pressure dependence behavior is different for Mn and Re. For Mn, the change in volume to reach the transition state is always clearly positive (water exchange, CH3CN, DMS), indicating an Id mechanism. In the case of Re, an Id/Ia changeover is assigned on the basis of reaction profiles with a strong volume maximum for pyrazine and a minimum for DMS as the entering ligand.  相似文献   

12.
The synthesis and characterization of "2 + 1" complexes of the [M(CO)(3)](+) (M = Re, (99m)Tc) core with the β-diketones acetylacetone (complexes 2, 8) and curcumin (complexes 5, 10 and 6, 11) as bidentate OO ligands, and imidazole or isocyanocyclohexane as monodentate ligands is reported. The complexes were synthesized by reacting the [NEt(4)](2)[Re(CO)(3)Br(3)] precursor with the β-diketone to generate the intermediate aqua complex fac-Re(CO)(3)(OO)(H(2)O) that was isolated and characterized, followed by replacement of the labile water by the monodentate ligand. All complexes were characterized by mass spectrometry, NMR and IR spectroscopies, and elemental analysis. In the case of complex 2, bearing imidazole as the monodentate ligand, X-ray analysis was possible. The chemistry was successfully transferred at (99m)Tc tracer level. The curcumin complexes 5 and 6, as well as their intermediate aqua complex 4, that bear potential for radiopharmaceutical applications due to the wide spectrum of pharmacological activity of curcumin, were successfully tested for selective staining of β-amyloid plaques of Alzheimer's disease. The fact that the complexes maintain the affinity of the mother compound curcumin for β-amyloid plaques prompts for further exploration of their chemistry and biological properties as radioimaging probes.  相似文献   

13.
The nature of the heteroatom X incorporated in the five-membered PXP-diphosphine bridging chain was found to play a primary unit role both in the overall stability and in the stereochemical arrangement of nitrido-containing [M(N)(PXP)](2+) metal fragments (M = Tc, Re). Thus, by mixing PXP ligands with labile [Re(N)Cl(4)](-) and Tc(N)Cl(2)(PPh(3))(2) nitrido precursors in CH(2)Cl(2)/MeOH mixtures, a series of neutral M(N)Cl(2)(PXP) complexes (M = Tc, 1-5; M = Re, 8, 9) was collected. In the resulting distorted octahedrons, PXP adopted facial or meridional coordination, and combination with halide co-ligands produced three different stereochemical arrangements, that is, fac,cis, mer,cis, and mer,trans, depending primarily on the nature of the diphosphine heteroatom X. When X = NH, mer,cis-Tc(N)Cl(2)(PNP1), 1, was the only isomer formed. Alternatively, when a tertiary amine nitrogen (X = NR; R = CH(3), CH(2)CH(2)OCH(3)) was introduced in the bridging chain, fac,cis-M(N)Cl(2)(PN(R)P) complexes (M = Tc, 2, 3; M = Re, 8f) were obtained. Isomerization into the mer,cis-Re(N)Cl(2)(PN(R)P), 8m, species was observed only in the case of rhenium when the tertiary amine group carried the less encumbering methyl substituent. fac,cis-Tc(N)Cl(2)(PSP), 4f, was isolated in the solid state when X = S, but a mixture of fac,cis-Tc(N)Cl(2)(PSP) and mer,trans-Tc(N)Cl(2)(PSP), 4m, isomers was found in equilibrium in the solution state. A similar equilibrium between fac,cis-M(N)Cl(2)(POP) (M = Tc, 5f; M = Re, 9f) and mer,trans-M(N)Cl(2)(POP) (M = Tc, 5m; M = Re, 9m) species was detected in POP-containing complexes. The molecular structure of all of these complexes was assessed by means of conventional physicochemical techniques including multinuclear NMR spectroscopy and X-ray diffraction analysis of representative mer,cis-Tc(N)Cl(2)(PN(H)P), 1, fac,cis-Tc(N)Cl(2)(PSP), 4f, and mer,cis-Re(N)Cl(2)(PN(Me)P), 8m, compounds.  相似文献   

14.
Chemical or electrochemical reduction of the 1,4,7-trithiacyclononane (9S3) complexes [MII(9S3)2][BF4]2 (M = Re (3a) or Tc (3b)) results in instantaneous C-S bond cleavage to yield ethene and the stable MIII thiolate complexes [MIII(9S3)L][BF4] (M = Re (4a) or Tc (4b), L = SCH2CH2SCH2CH2S). Compounds 4 have been characterized by 1H NMR spectroscopy, and the pseudo-octahedral geometry of 4b has been confirmed by X-ray crystallography. Upon electrochemical reduction 4a loses ethene, while 4b can be reversibly reduced to [TcII(9S3)L], which is then further reduced to Tc(I) with loss of ethene. Successive ethene loss is observed in the mass spectra of compounds 3 and 4. The radiosynthesis of 4a with 188Re can be comfortably completed within 10 min starting with 188ReO4- from a 188W/188Re generator, with a radiochemical yield in excess of 90%, and thus represents a practical approach to the preparation of stable 188Re (and 99mTc) thioether complex derivatives/conjugates for clinical use. Crystal data: 4b, C10H20S6Tc, orthorhombic Pbca, a = 12.233(2) A, b = 14.341(2) A, c = 20.726(3) A, Z = 8.  相似文献   

15.
The synthesis and characterization of oxotechnetium and oxorhenium mixed-ligand complexes of the general formula MO[NN][S](3) (M = (99)Tc and Re), where NN represents the bidentate ligand 2,2'-bipyridine and S represents a monodentate thiophenol, is reported. The complexes were prepared by ligand exchange reactions using (99)Tc-gluconate and ReOCl(3)(PPh(3))(2) as precursors for the oxotechnetium and oxorhenium complexes, respectively. Compound 1 (M = (99)Tc, S = 4-methylthiophenol) crystallizes in the monoclinic space group P2(1)/a, a = 23.12(1) A, b = 14.349(6) A, c = 8.801(4) A, beta = 94.81(2) degrees, V = 2918(2) A(3), Z = 4. Compound 3 (M = Re, S = 4-methylthiophenol) crystallizes in the monoclinic space group P2(1)/a, a = 23.018(9) A, b = 14.421(5) A, c = 8.775(3) A, beta = 94.78(1) degrees, V = 2903(2) A(3), Z = 4. Compound 4 (M = Re, S = 4-methoxythiophenol) crystallizes in the orthorhombic space group Pbca, a = 16.32(1) A, b = 24.55(2) A, c = 16.94(1) A, V = 6788(9) A(3), Z = 8. In all cases, the coordination geometry around the metal is distorted octahedral with the equatorial plane being defined by the three sulfur atoms of the thiophenols and one nitrogen atom of 2,2'-bipyridine, while the apical positions are occupied by the second nitrogen atom of 2,2'-bipyridine and the oxygen of the M=O core. The complexes are stable, neutral, and lipophilic. Complete (1)H and (13)C NMR assignments are reported for all complexes. The analogous oxotechnetium complexes have been also synthesized at tracer level ((99m)Tc) by mixing the 2,2'-bipyridine and the corresponding thiol with Na(99m)TcO(4) generator eluate using NaBH(4) as reducing agent. Their structure was established by chromatographic comparison with authentic oxotechnetium and oxorhenium complexes using high performance liquid chromatography techniques.  相似文献   

16.
Mixed ligand fac-tricarbonyl complexes of the general formula [M(L1)(L2)(CO)3](M = Re, 99(m)Tc, L1= imidazole, benzyl isocyanide, L2 = 1H-imidazole-4-carboxylic acid, pyridine-2,4-dicarboxylic acid, pyridine-2,5-dicarboxylic acid) have been prepared starting from the precursors [M(OH2)3(CO)3]+. The complexes can be obtained in good yield and purity in a two-step procedure by first attaching the bidentate ligand followed by addition of the monodentate. 99mTc compounds can also be prepared at the tracer level in one-pot procedures with L1 and L2 being concomitantly present. This [2 + 1] approach allows the labeling of bioactive molecules containing a monodentate or a bidentate donor site. Examples given in here are N-(tert-butoxycarbonyl)glycyl-N-(3-(imidazol-1-yl)propyl)phenylalaninamide, 5-((3-(imidazol-1-yl)propyl)aminomethyl)-2'-deoxyuridine and 4-(5-isonitrilpentyl)-1-(2-methoxyphenyl)-piperazine as L1 and N-((6-carboxypyridine-3-yl)methyl)glycylphenylalanine as L2. The corresponding second ligand can be used to influence the physico-chemical properties of the conjugate. The crystal structures of [99Tc(OH2)(imc)(CO)3], [Re(OH2)(2,4-dipic)(CO)3], [Re(bic)(2,4-dipic)(CO)3] and [Re(im)(2,5-dipic)(CO)3] are reported.  相似文献   

17.
The ligand dependence of metal-metal bonding in the d(3)d(3) face-shared M(2)X(9)(n-) (M(III) = Cr, Mo, W; M(IV) = Mn, Tc, Re; X = F, Cl, Br, I) dimers has been investigated using density functional theory. In general, significant differences in metal-metal bonding are observed between the fluoride and chloride complexes involving the same metal ion, whereas less dramatic changes occur between the bromide and iodide complexes and minimal differences between the chloride and bromide complexes. For M = Mo, Tc, and Re, change in the halide from F to I results in weaker metal-metal bonding corresponding to a shift from either the triple metal-metal bonded to single bonded case or from the latter to a nonbonded structure. A fragment analysis performed on M(2)X(9)(3-) (M = Mo, W) allowed determination of the metal-metal and metal-bridge contributions to the total bonding energy in the dimer. As the halide changes from F to I, there is a systematic reduction in the total interaction energy of the fragments which can be traced to a progressive destabilization of the metal-bridge interaction because of weaker M-X(bridge) bonding as fluoride is replaced by its heavier congeners. In contrast, the metal-metal interaction remains essentially constant with change in the halide.  相似文献   

18.
We describe the synthesis of the dip (di-picolyl-carboxylate) bifunctional chelator system, capable of fast coordination of Cu(2+), (64)Cu(2+) and Co(2+), as well as the [M(CO)(3)](+)-core (M = (99m)Tc, Re); it displays a variety of binding modes--tridentate when protected, tetradentate when deprotected. Syntheses of both the benzyl-nitro derivative and the benzyl-amino derivatives are described. The latter was coupled to biotin to show the viability of the system for functionalization with biomolecules. Besides coordination chemistry with stable isotopes, we also present labelling data with (64)Cu and (99m)Tc, as well as in vitro stability studies.  相似文献   

19.
The novel trihydro(mercaptoazolyl)borates Na[H(3)B(tim(Me))] (L(1)) (tim(Me) = 2-mercapto-1-methylimidazolyl), Na[H(3)B(tim(Bupip))] (L(2)) (tim(Bupip) = 1-[4-((2-methoxyphenyl)-1-piperazinyl)butyl]-2-mercaptoimidazolyl), and Na[H(3)B(bzt)] (L(3)) (bzt = 2-mercaptobenzothiazolyl) were synthesized by reaction of NaBH(4) with the corresponding azole. Ligands L(1)-L(3) represent a new class of light and soft scorpionates that stabilizes the [M(CO)(3)](+) core (M = (99)Tc, Re) by formation of the complexes fac-[M{kappa(3)-H(mu-H)(2)B(tim(Me))}(CO)(3)] (M = (99)Tc (1), Re (2)), fac-[Re{kappa(3)-H(mu-H)(2)B(tim(Bupip))}(CO)(3)] (3), and fac-[Re{kappa(3)-H(mu-H)(2)B(bzt)}(CO)(3)] (4), respectively. The soft scorpionates are coordinated to the metal in unique (kappa(3)-H, H', S) fashion, as confirmed by X-ray crystallography of 1, 2, and 4. These complexes with bis-agostic hydride coordination are formed in aqueous solution with the two hydrides replacing two coordinating aquo ligands. The agostic hydrogen atoms were located directly, confirming an unprecedented donor atom set combining one sulfur and two hydrogen atoms. Preliminary studies have shown the possibility of preparing some of these complexes at the no carrier added level ((99m)Tc), under conditions as required in radiopharmaceutical preparation. Due to their lipophilicity, small-size, and easy functionalization with adequate biomolecules, the trihydro(mercaptoazolyl)borate technetium tricarbonyl complexes are suitable for the design of CNS receptor ligand radiopharmaceuticals as exemplified with 3, comprising a pendant serotonergic 5-HT(1A) ligand. The integrated design of radiopharmaceuticals involving a bis-agostic scorpionate ligand is demonstrated by the synthesis of 4, with an integrated benzothiazolyl fragment for the recognition of beta-amyloid plaques.  相似文献   

20.
The reaction of fac-[NEt(4)](2)[Re(CO)(3)Br(3)] with (S)-(2-(2'-pyridyl)ethyl)cysteamine, L(1), in methanol leads to the formation of the cationic fac-[Re(CO)(3)(NSN)][Br] complex, 1, with coordination of the nitrogen of the pyridine, the sulfur of the thioether, and the nitrogen of the primary amine. When fac-[NEt(4)](2)[Re(CO)(3)Br(3)] reacts with the homocysteine derivative (S)-(2-(2'-pyridyl)ethyl)-d,l-homocysteine, L(2), the neutral fac-Re(CO)(3)(NSO) complex, 2, is produced with coordination of the nitrogen of the primary amine, the sulfur of the thioether, and the oxygen of the carboxylate group, while the pyridine ring remains uncoordinated. The analogous technetium-99m complexes, 1' and 2', were also prepared quantitatively by the reaction of L(1) and L(2) with the fac-[(99m)Tc(CO)(3)(H(2)O)(3)](+) precursor at 70 degrees C in water. Given that both (S)-(2-(2'-pyridyl)ethyl)cysteamine and homocysteine can be easily N- or S-derivatized by a bioactive molecule of interest, both the NSN or NSO ligand systems could be used to develop target-specific radiopharmaceuticals for diagnosis and therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号