首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have synthesized a triamidoamine ligand ([(RNCH(2)CH(2))(3)N](3)(-)) in which R is 3,5-(2,4,6-i-Pr(3)C(6)H(2))(2)C(6)H(3) (hexaisopropylterphenyl or HIPT). The reaction between MoCl(4)(THF)(2) and H(3)[HIPTN(3)N] in THF followed by 3.1 equiv of LiN(SiMe(3))(2) led to formation of orange [HIPTN(3)N]MoCl. Reduction of MoCl (Mo = [HIPTN(3)N]Mo) with magnesium in THF under dinitrogen led to formation of salts that contain the ((Mo(N(2)))(-) ion. The (Mo(N(2)))(-) ion can be oxidized by zinc chloride to give Mo(N(2)) or protonated to give MoN=NH. The latter was found to decompose to yield MoH. Other relevant compounds that have been prepared include (Mo=N-NH(2))(+) (by protonation of MoN=NH), M=1;N, (Mo=NH)(+) (by protonation of M=N), and (Mo(NH(3)))(+) (by treating MoCl with ammonia). (The anion is usually (B(3,5-(CF(3))(2)C(6)H(3))(4))(-) = (BAr'(4))(-).) X-ray studies were carried out on (Mg(DME)(3))(0.5)[Mo(N(2))], MoN=NMgBr(THF)(3), Mo(N(2)), M=N, and (Mo(NH(3)))(BAr'(4)). These studies suggest that the HIPT substituent on the triamidoamine ligand creates a cavity that stabilizes a variety of complexes that might be encountered in a hypothetical Chatt-like dinitrogen reduction scheme, perhaps largely by protecting against bimolecular decomposition reactions.  相似文献   

2.
[Ni(P(R)(2)N(R')(2))(2)(CH(3)CN)](2+) complexes with R = Ph, R' = 4-MeOPh or R = Cy, R' = Ph , and a mixed-ligand [Ni(P(R)(2)N(R')(2))(P(R'(2))N(R'(2)))(CH(3)CN)](2+) with R = Cy, R' = Ph, R' = Ph, have been synthesized and characterized by single-crystal X-ray crystallography. These and previously reported complexes are shown to be electrocatalysts for the oxidation of formate in solution to produce CO(2), protons, and electrons, with rates that are first-order in catalyst and formate at formate concentrations below ~0.04 M (34 equiv). At concentrations above ~0.06 M formate (52 equiv), catalytic rates become nearly independent of formate concentration. For the catalysts studied, maximum observed turnover frequencies vary from <1.1 to 15.8 s(-1) at room temperature, which are the highest rates yet reported for formate oxidation by homogeneous catalysts. These catalysts are the only base-metal electrocatalysts as well as the only homogeneous electrocatalysts reported to date for the oxidation of formate. An acetate complex demonstrating an η(1)-OC(O)CH(3) binding mode to nickel has also been synthesized and characterized by single-crystal X-ray crystallography. Based on this structure and the electrochemical and spectroscopic data, a mechanistic scheme for electrocatalytic formate oxidation is proposed which involves formate binding followed by a rate-limiting proton and two-electron transfer step accompanied by CO(2) liberation. The pendant amines have been demonstrated to be essential for electrocatalysis, as no activity toward formate oxidation was observed for the similar [Ni(depe)(2)](2+) (depe = 1,2-bis(diethylphosphino)ethane) complex.  相似文献   

3.
In combination with EtAlCl(2) (Mo : Al = 1 : 15) the imido complexes [MoCl(2)(NR)(NR')(dme)] (R = R' = 2,6-Pr(i)(2)-C(6)H(3) (1); R = 2,6-Pr(i)(2)-C(6)H(3), R' = Bu(t) (3); R = R' = Bu(t) (4); dme = 1,2-dimethoxyethane) and [Mo(NHBu(t))(2)(NR)(2)] (R = 2,6-Pr(i)(2)-C(6)H(3) (5); R = Bu(t) (6)) each show moderate TON, activity, and selectivity for the catalytic dimerisation of ethylene, which is influenced by the nature of the imido substituents. In contrast, the productivity of [MoCl(2)(NPh)(2)(dme)] (2) is low and polymerisation is favoured over dimerisation. Catalysis initiated by complexes 1-4 in combination with MeAlCl(2) (Mo : Al = 1 : 15) exhibits a significantly lower productivity. Reaction of complex 5 with EtAlCl(2) (2 equiv.) gives rise to a mixture of products, while addition of MeAlCl(2) affords [MoMe(2)(N-2,6-Pr(i)(2)-C(6)H(3))(2)]. Treatment of 6 with RAlCl(2) (2 equiv.) (R = Me, Et) yields [Mo({μ-N-Bu(t)}AlCl(2))(2)] (7) in both cases. Imido derivatives 1 and 3 react with Me(3)Al and MeAlCl(2) to form the bimetallic complexes [MoMe(2)(N{R}AlMe(2){μ-Cl})(NR')] (R = R' = 2,6-Pr(i)(2)-C(6)H(3) (8); R = 2,6-Pr(i)(2)-C(6)H(3), R' = Bu(t) (10)) and [MoMe(2)(N{R}AlCl(2){μ-Cl})(NR')] (R = R' = 2,6-Pr(i)(2)-C(6)H(3) (9); R = 2,6-Pr(i)(2)-C(6)H(3), R' = Bu(t) (11)), respectively. Exposure of complex 8 to five equivalents of thf or PMe(3) affords the adducts [MoMe(2)(N-2,6-Pr(i)(2)-C(6)H(3))(2)(L)] (L = thf (12); L = PMe(3) (13)), while reaction with NEt(3) (5 equiv.) yields [MoMe(2)(N-2,6-Pr(i)(2)-C(6)H(3))(2)]. The molecular structures of complexes 5, 9 and 11 have been determined.  相似文献   

4.
A new synthetic pathway to Chatt-type Mo(0) and W(0) bis(dinitrogen) complexes with the ligand prP(4) is presented (prP(4) is a linear tetraphos ligand with two ethylene bridges and a central propylene bridge). The synthesis starts from MoCl(5) and WCl(6), respectively, employing Mg as reductant. Whereas the electrochemical reduction of the oxido-iodido-molybdenum(IV) complex [Mo(O)I(meso-prP(4)](+) (1) only gave trans-[Mo(N(2))(2)(meso-prP(4))] (2a; R?mer et al., Eur. J. Inorg. Chem.2008, 3258), the direct synthesis under normal conditions affords both trans and cis complexes 2a and 2b. The reaction products are characterised by vibrational and NMR spectroscopy. Moreover, a single-crystal X-ray structure determination of cis-α-[Mo(N(2))(2)(rac-prP(4))] (2b) is performed. In contrast to the trans bis(dinitrogen)molybdenum(0) complex 2a supported by the meso prP(4) ligand the corresponding cis-complex is exclusively coordinated by the rac isomer of prP(4). The reactivity of 2 with acids is investigated as well, leading to the NNH(2) complex [MoF(NNH(2))(meso-prP(4))]BF(4) (15). Analogous results are obtained with the tungsten complexes.  相似文献   

5.
Reaction of [MCl(NEt)(dppe)2)Cl (M = Mo, W) with n-BuLi in tert-butyl methyl ether under an N2 atmosphere yields the M0 bis(dinitrogen) complexes [M(N2)2(dppe)2] and acetonitrile. A mechanism is proposed for this reaction which involves an anionic chloro-acetonitrile intermediate. The implications of these findings to the chemistry of Mo and W organoimides are discussed.  相似文献   

6.
The synthesis and characterisation of novel Li and Yb complexes is reported, in which the monoanionic beta-diketiminato ligand has been (i) reduced (SET or 2 [times] SET), (ii) deprotonated, or (iii) C-N bond-cleaved. Reduction of the lithium beta-diketiminate Li(L(R,R'))[L(R,R')= N(SiMe(3))C(R)CHC(R')N(SiMe(3))] with Li metal gave the dilithium derivative [Li(tmen)(mu-L(R,R'))Li(OEt(2))](R = R'= Ph; or, R = Ph, R[prime or minute]= Bu(t)). When excess of Li was used the dimeric trilithium [small beta]-diketiminate [Li(3)(L(R,R[prime or minute]))(tmen)](2)(, R = R'= C(6)H(4)Bu(t)-4 = Ar) was obtained. Similar reduction of [Yb(L(R,R'))(2)Cl] gave [Yb[(mu-L(R,R'))Li(thf)](2)](, R = R[prime or minute]= Ph; or, R = R'= C(6)H(4)Ph-4 = Dph). Use of the Yb-naphthalene complex instead of Li in the reaction with [Yb(L(Ph,Ph))(2)] led to the polynuclear Yb clusters [Yb(3)(L(Ph,Ph))(3)(thf)], [Yb(3)(L(Ph,Ph))(2)(dme)(2)], or [Yb(5)(L(Ph,Ph))(L(1))(L(2))(L(3))(thf)(4)] [L(1)= N(SiMe(3))C(Ph)CHC(Ph)N(SiMe(2)CH(2)), L(2)= NC(Ph)CHC(Ph)H, L(3)= N(SiMe(2)CH(2))] depending on the reaction conditions and stoichiometry. The structures of the crystalline complexes 4, 6x21/2(hexane), 5(C(6)D(6)), and have been determined by X-ray crystallography (and have been published).  相似文献   

7.
Reactions of the lithiated diamido-pyridine or diamido-amine ligands Li(2)N(2)N(py) or Li(2)N(2)N(am) with [W(NAr)Cl(4)(THF)] (Ar = Ph or 2,6-C(6)H(3)Me(2); THF = tetrahydrofuran) afforded the corresponding imido-dichloride complexes [W(NAr)(N(2)N(py))Cl(2)] (R = Ph, 1, or 2,6-C(6)H(3)Me(2), 2) or [W(NAr)(N(2)N(am))Cl(2)] (R = Ph, 3, or 2,6-C(6)H(3)Me(2), 4), respectively, where N(2)N(py) = MeC(2-C(5)H(4)N)(CH(2)NSiMe(3))(2) and N(2)N(am) = Me(3)SiN(CH(2)CH(2)NSiMe(3))(2). Subsequent reactions of 1 with MeMgBr or PhMgCl afforded the dimethyl or diphenyl complexes [W(NPh)(N(2)N(py))R(2)] (R = Me, 5, or Ph, 6), respectively, which have both been characterized by single crystal X-ray diffraction. Reactions of Li(2)N(2)N(py) or Li(2)N(2)N(am) with [Mo(NR)(2)Cl(2)(DME)] (R = (t)Bu or Ph; DME = 1,2-dimethoxyethane) afforded the corresponding bis(imido) complexes [Mo(NR)(2)(N(2)N(py))] (R = (t)Bu, 7, or Ph, 8) and [Mo(N(t)Bu)(2)(N(2)N(am))] (9).  相似文献   

8.
A new method has been developed to synthesise bis η(5)-cyclopentadienyl dithiolene complexes of molybdenum and tungsten. This procedure involves the in situ thermolysis of the azo compounds, 2,2'-azobisisobutyronitrile (AIBN) or 1,1'-azobiscyclohexanecarbonitrile (ACCN) (R'(2)N(2), R' = CMe(2)CN or C(6)H(10)CN, respectively), which initiates a reaction between [Cp(2)M(S(4))] (M = Mo or W) and an alkyne (HC(2)R, R = Ph, 2-pyridyl or 2-quinoxalinyl) and produce the corresponding [Cp(2)M(S(2)C(2)RR')] compound.  相似文献   

9.
The coordination chemistry of the N-substituted arylamido ligands [N(R)(C6H3R'2-2,6)] [R = SiMe3, R' = Me (L1); R = CH2But, R' = Pri (L2)] toward FeII and CoII ions was studied. The monoamido complexes [M(L1)(Cl)(tmeda)] [M = Fe (1), Co (2)] react readily with MeLi, affording the mononuclear, paramagnetic iron(II) and cobalt(II) methyl-arylamido complexes [M(L1)(Me)(tmeda)] [M = Fe (3), Co (4)]. Treatment of 2:1 [Li(L2)(THF)2]/FeCl2 affords the unusual two-coordinate iron(II) bis(arylamide) [Fe(L2)2] (5).  相似文献   

10.
Transition-metal-borylene complexes of the type [(OC)(5)M=BR] {M=Cr, Mo, W; R=N(SiMe(3))(2), 1a-3a, Si(SiMe(3))(3), 4a} and [(OC)(4)Fe=B=N(SiMe(3))(2)] (8) were prepared by salt elimination reactions. Synthesis of the latter complex was accompanied by the formation of substantial amounts of an unusual dinuclear iron complex [Fe(2){mu-C(2)O(2)(BN(SiMe(3))(2))}(2)(CO)(6)] (9). The aminoborylene complexes of Group 6 metals were converted to trans-[(Cy(3)P)(CO)(4)M=B=N(SiMe(3))(2)] (5a-7a) by irradiation in the presence of PCy(3). Structural and spectroscopic parameters were discussed with respect to the trans-effect of the borylene ligand and the degree of M-B d(pi)-p(pi)-backbonding. Computational studies were performed on Group 6-borylene complexes. The population and topological analyses as well as the molecular orbital composition are consistent with the presence of both sigma-and pi-type interactions. There are, however, indications that the d(pi)-p(pi)-backbonding in the silylborylene complex is significantly more pronounced than in the aminoborylene complexes.  相似文献   

11.
Zhu G  Parkin G 《Inorganic chemistry》2005,44(26):9637-9639
Mo(PMe(3))(6) and W(PMe(3))(4)(eta(2)-CH(2)PMe(2))H undergo oxidative addition of the O-H bond of RCO(2)H to yield sequentially M(PMe(3))(4)(eta(2)-O(2)CR)H and M(PMe(3))(3)(eta(2)-O(2)CR)(eta(1)-O(2)CR)H(2) (M = Mo and R = Ph, Bu(t); M = W and R = Bu(t)). One of the oxygen donors of the bidentate carboxylate ligand may be displaced by H(2)O to give rare examples of aqua-dihydride complexes, M(PMe(3))(3)(eta(1)-O(2)CR)(2)(OH(2))H(2), in which the coordinated water molecule is hydrogen-bonded to both carboxylate ligands.  相似文献   

12.
Several N-functionalized bis(phosphino)amine ligands with ether, thioether and pyridyl tethers [(R')2PN(R')P(R')2=PNP] () have been synthesized. They react with CrCl3(THF)3 in CH2Cl2 to give dinuclear chloro bridged Cr2(micro-Cl)2Cl4(PNP)2 () which converts to the corresponding mononuclear solvento complexes fac-CrCl3(PNP)(NCR) (). The structures of the ligand with R'=-(CH2)3SCH3 and R'=Ph, and the complexes with R=CH3 () and C2H5 (), R'=-(CH2)3SCH3 and R'=Ph) have been established by single-crystal X-ray crystallography. All ligands are active towards ethylene tetramerization in the presence of Cr(III) and excess MAO at 80 degrees C in toluene. The ligand with thioether pendant Et2PN(CH2CH2CH2SCH3)PEt2 () shows the highest selectivity (55% weight in liquid product distribution) towards 1-octene. Complexes and are active towards ethylene polymerization under thermal conditions.  相似文献   

13.
The dinitrogen complex ([NPN]Ta)2(mu-eta1:eta2-N2)(mu-H)2, 1, (where [NPN] = (PhNSiMe2CH2)2PPh) undergoes hydrosilylation with primary and secondary alkyl- and arylsilanes, giving a new N-Si bond and a new terminal tantalum hydride derived from one Si-H unit. Various primary silanes can be employed to give isolable complexes of the general formula ([NPN]TaH)(mu-N-N-SiH(n)R(3-n))(mu-H)2(Ta[NPN]) (5, R=Bu, n = 2; 9, R=Ph, n = 2). Analogous complexes featuring secondary silanes are not isolable, because these products, and 5 and 9, are uniformly unstable toward reductive elimination of bridging hydrides as H2, followed by cleavage of the N-N bond to give ([NPN]TaH)(mu-N)(mu-N-SiH(n)R(3-n))(Ta[NPN]) (6, R=Bu, n = 2; 10, R=Ph, n = 2; 15, R=Ph, n = 1; 16, R=Ph and Me, n = 1). The bridging nitrido ligand in these complexes is itself a substrate for a second hydrosilylation when n = 2, and schemes leading to Ta(IV) complexes of the general formula ([NPN]Ta)2(mu-N-SiH2R)(mu-N-SiH2R') via elimination of H2 are reported (4, R=R'=Bu; 12, R=Bu, R' = Ph; 13, R=Bu, R' = CH2CH2SiH3). At this point, the general reaction manifold for these compounds ramifies, with distinct outcomes occurring for different R groups-[NPN] ligand amide migration from Ta to RSi affords 11, whereas stable complex 6 rearranges to give 7, in the presence of excess silane. Ethanediylbissilane reacts with 1 to give 14, isostructural to 7.  相似文献   

14.
Unprecedented 16-electron gold(i) olefin complexes of general formula [Au(bipy(R,R'))(eta(2)-olefin)](PF(6)) and [Au(2)(bipy(R,R'))(2)(mu-eta(2):eta(2)-diolefin)](PF(6))(2) (bipy(R,R') = 6-substituted-2,2'-bipyridine) have been prepared by reaction of dinuclear gold(III) oxo complexes [Au(2)(bipy(R,R'))(2)(mu-O)(2)](PF(6))(2) with the appropriate olefin. The X-ray crystal structures of two mononuclear complexes (olefin = styrene) show in-plane coordination of the olefin and a C[double bond, length as m-dash]C bond distance considerably lengthened with respect to the free olefin. The spectroscopic properties of the complexes are discussed and compared with those of analogous d(10) metal derivatives. Both structural and spectroscopic information indicate a substantial contribution of pi-back-donation to the Au-olefin bond in the three-coordinate species. Theoretical calculations carried out at the hybrid-DFT level on the model compound [Au(bipy)(eta(2)-CH(2)[double bond, length as m-dash]CH(2))](+) show excellent agreement with the experimental findings giving in addition an estimate of a pi-back-bonding contribution higher than that of the sigma-bonding.  相似文献   

15.
In a search for more hydrocarbon solvent soluble derivatives of the parent ligand, 2,6-[Ph(2)P(O)CH(2)](2)C(5)H(3)NO (1a), a series of new ligands, 2,6-[R(2)P(O)CH(2)](2)C(5)H(3)NO [R = Bz (1b); Tol (1c); Et (1d); Pr (1e); Bu (1f); Pn (1g); Hx (1h); Hp (1i); and Oct (1j)] and 2,6-[RR'P(O)CH(2)](2)C(5)H(3)NO [R = Ph, R' = Bz (2a); R = Ph, R' = Me (2b); R = Ph, R' = Hx (2c); R = Ph, R' = Oct (2d)], have been prepared by either Arbusov or Grignard substitutions on 2,6-bis(chloromethyl)pyridine followed by N-oxidation. The new ligands have been characterized by spectroscopic methods, and their coordination chemistry with selected lanthanide ions has been surveyed. Several 1:1 and 2:1 ligand/metal complexes have been isolated, and single-crystal X-ray diffraction analyses for Nd(2a)(NO(3))(3), Er(2a)(NO(3))(3), Yb(1d)(NO(3))(3), and [Nd(1c)(2)](NO(3))(3) are described. The new structural data are discussed in relation to the structures of complexes formed by 1a.  相似文献   

16.
The tetrakis(trimethylphosphine) molybdenum nitrosyl hydrido complex trans-Mo(PMe(3))(4)(H)(NO) (2) and the related deuteride complex trans-Mo(PMe(3))(4)(D)(NO) (2a) were prepared from trans-Mo(PMe(3))(4)(Cl)(NO) (1). From (2)H T(1 min) measurements and solid-state (2)H NMR the bond ionicities of 2a could be determined and were found to be 80.0% and 75.3%, respectively, indicating a very polar Mo--D bond. The enhanced hydridicity of 2 is reflected in its very high propensity to undergo hydride transfer reactions. 2 was thus reacted with acetone, acetophenone, and benzophenone to afford the corresponding alkoxide complexes trans-Mo(NO)(PMe(3))(4)(OCHR'R') (R' = R' = Me (3); R' = Me, R' = Ph (4); R' = R' = Ph (5)). The reaction of 2 with CO(2) led to the formation of the formato-O-complex Mo(NO)(OCHO)(PMe(3))(4) (6). The reaction of with HOSO(2)CF(3) produced the anion coordinated complex Mo(NO)(PMe(3))(4)(OSO(2)CF(3)) (7), and the reaction with [H(Et(2)O)(2)][BAr(F)(4)] with an excess of PMe(3) produced the pentakis(trimethylphosphine) coordinated compound [Mo(NO)(PMe(3))(5)][BAr(F)(4)] (8). Imine insertions into the Mo-H bond of 2 were also accomplished. PhCH[double bond, length as m-dash]NPh (N-benzylideneaniline) and C(10)H(7)CH=NPh (N-1-naphthylideneaniline) afforded the amido compounds Mo(NO)(PMe(3))(4)[NR'(CH(2)R')] (R' = R' = Ph (9), R' = Ph, R' = naphthyl (11)). 9 could not be obtained in pure form, however, its structure was assigned by spectroscopic means. At room temperature 11 reacted further to lose one PMe(3) forming 12 (Mo(NO)PMe(3))(3)[N(Ph)CH(2)C(10)H(6))]) with agostic stabilization. In a subsequent step oxidative addition of the agostic naphthyl C-H bond to the molybdenum centre occurred. Then hydrogen migration took place giving the chelate amine complex Mo(NO)(PMe(3))(3)[NH(Ph)(CH(2)C(10)H(6))] (15). The insertion reaction of 2 with C(10)H(7)N=CHPh led to formation of the agostic compound Mo(NO)(PMe(3))(3)[N(CH(2)Ph)(C(10)H(7))] (10). Based on the knowledge of facile formation of agostic compounds the catalytic hydrogenation of C(10)H(7)N=CHPh and PhN=CHC(10)H(7) with 2 (5 mol%) was tested. The best conversion rates were obtained in the presence of an excess of PMe(3), which were 18.4% and 100% for C(10)H(7)N=CHPh and PhN=CHC(10)H(7), respectively.  相似文献   

17.
Synthetic studies are presented addressing the oxidative decarbonylation of molybdenum and tungsten complexes supported by the encumbering m-terphenyl isocyanide ligand CNAr(Dipp2) (Ar(Dipp2) = 2,6-(2,6-(i-Pr)(2)C(6)H(3))(2)C(6)H(3)). These studies represent an effort to access halide or pseudohalide M/CNAr(Dipp2) species (M = Mo, W) for use as precursors to low-coordinate, low-valent group 6 isocyanide complexes. The synthesis and structural chemistry of the tetra- and tricarbonyl tungsten complexes trans-W(CO)(4)(CNAr(Dipp2))(2) and trans-W(NCMe)(CO)(3)(CNAr(Dipp2))(2) are reported. The acetonitrile adducts trans-M(NCMe)(CO)(3)(CNAr(Dipp2))(2) (M = Mo, W) react with I(2) to form divalent, diiodide complexes in which the extent of decarbonylation differs between Mo and W. In the molybdenum example, the diiodide, dicarbonyl complex MoI(2)(CO)(2)(CNAr(Dipp2))(2) is generated, which has an S = 1 ground state in solution. Paramagnetic group 6 MX(2)L(4) complexes are rare, and the structure of MoI(2)(CO)(2)(CNAr(Dipp2))(2) is discussed in relation to other diamagnetic and C(2v)-distorted MX(2)L(4) complexes. Diiodide MoI(2)(CO)(2)(CNAr(Dipp2))(2) reacts further with I(2) to effect complete decarbonylation, producing the paramagnetic tetraiodide complex trans-MoI(4)(CNAr(Dipp2))(2). The reactivity of the trans-M(NCMe)(CO)(3)(CNAr(Dipp2))(2) (M = Mo, W) complexes toward benzoyl peroxide is also surveyed, and it is shown that dicarboxylate complexes can be obtained by oxidative or salt-elimination routes. The reduction behavior of the tetraiodide complex trans-MoI(4)(CNAr(Dipp2))(2) toward Mg metal and sodium amalgam is studied. In benzene solution under N(2), trans-MoI(4)(CNAr(Dipp2))(2) is reduced by Na/Hg to the η(6)-arene-dinitrogen complex, (η(6)-C(6)H(6))Mo(N(2))(CNAr(Dipp2))(2). The diiodide-η(6)-benzene complex (η(6)-C(6)H(6))MoI(2)(CNAr(Dipp2))(2) is an isolable intermediate in this reduction reaction, and its formation and structure are discussed in context of putative low-coordinate, low-valent molybdenum isocyanide complexes.  相似文献   

18.
Reduction of [M(CO)2(eta-RC[triple bond]CR')Tp']X {Tp' = hydrotris(3,5-dimethylpyrazolyl)borate, M = Mo, X = [PF6]-, R = R' = Ph, C6H4OMe-4 or Me; R = Ph, R' = H; M = W, X = [BF4]-, R = R' = Ph or Me; R = Ph, R' = H} with [Co(eta-C5H5)2] gave paramagnetic [M(CO)2(eta-RC[triple bond]CR')Tp'], characterised by IR and ESR spectroscopy. X-Ray structural studies on the redox pair [Mo(CO)2(eta-PhC[triple bond]CPh)Tp'] and [Mo(CO)2(eta-PhC[triple bond]CPh)Tp'][PF6] showed that oxidation is accompanied by a lengthening of the C[triple bond]C bond and shortening of the Mo-C(alkyne) bonds, consistent with removal of an electron from an orbital antibonding with respect to the Mo-alkyne bond, and with conversion of the alkyne from a three- to a four-electron donor. Reduction of [Mo(CO)(NCMe)(eta-MeC[triple bond]CMe)Tp'][PF6] with [Co(eta-C5H5)2] in CH2Cl2 gives [MoCl(CO)(eta-MeC[triple bond]CMe)Tp'], via nitrile substitution in [Mo(CO)(NCMe)(eta-MeC[triple bond]CMe)Tp'], whereas a similar reaction with [M(CO){P(OCH2)3CEt}(eta-MeC[triple bond]CMe)Tp']+ (M = Mo or W) gives the phosphite-containing radicals [M(CO){P(OCH2)3CEt}(eta-MeC[triple bond]CMe)Tp']. ESR spectroscopic studies and DFT calculations on [M(CO)L(eta-MeC[triple bond]CMe)Tp'] {M = Mo or W, L = CO or P(OCH2)3CEt} show the SOMO of the neutral d5 species (the LUMO of the d4 cations) to be largely d(yz) in character although much more delocalised in the W complexes. Non-coincidence effects between the g and metal hyperfine matrices in the Mo spectra indicate hybridisation of the metal d-orbitals in the SOMO, consistent with a rotation of the coordinated alkyne about the M-C2 axis.  相似文献   

19.
Sung KM  Holm RH 《Inorganic chemistry》2000,39(6):1275-1281
Recent protein crystallographic results on tungsten enzymes and primary sequence relationships between certain molybdenum and tungsten enzymes provoke interest in the generalized bis(dithiolene) complexes [WIV(QR)(S2C2R'2)2]1- and [WVIO(QR)(S2C2R'2)2]1- (Q = O, S, Se) as minimal representations of enzyme sites. The existence and stability of W(IV) complexes have been explored by synthesis. Reaction of [W(CO)2(S2C2Me2)2] (1) with PhO- results in complete CO substitution to give [W(OPh)(S2C2Me2)2]1- (2). Reaction of 1 with PhQ- affords the monocarbonyls [W(CO)(QPh)(S2C2Me2)2]1- (Q = S (3), Se (5)). The use of sterically demanding 2,4,6-Pri3C6H2Q- also yields monocarbonyls, [W(CO)(QC6H2-2,4,6-Pri3)(S2C2Me2)2]1- (Q = S (4), Se (6)). The X-ray structures of square pyramidal 2 and trigonal prismatic 3-6 (with unidentate ligands cis) are described. The tendency to substitute one or both carbonyl ligands in 1 in the formation of [MIV(QAr)(S2C2Me2)2]1- and [MIV(CO)(QAr)(SeC2Me2)2]1- with M = Mo and W is related to the M-Q bond length and ligand steric demands. The results demonstrate a stronger binding of CO by W(IV) than Mo(IV), a behavior previously demonstrated by thermodynamic and kinetic features of zerovalent carbonyl complexes. Complexes 3-6 can be reversibly reduced to W(III) at approximately -1.5 V versus SCE. On the basis of the potential for 2(-2.07 V), monocarbonyl ligation stabilizes W(III) by approximately 500 mV. This work is part of a parallel investigation of the chemistry of bis(dithiolene)-molybdenum (Lim, B. S.; Donahue, J. P.; Holm, R. H. Inorg. Chem. 2000, 39, 263) and -tungsten complexes related to enzyme active sites.  相似文献   

20.
The discovery of tungsten enzymes and molybdenum/tungsten isoenzymes, in which the mononuclear catalytic sites contain a metal chelated by one or two pterin-dithiolene cofactor ligands, has lent new significance to tungsten-dithiolene chemistry. Reaction of [W(CO)(2)(S(2)C(2)Me(2))(2)] with RO(-) affords a series of square pyramidal desoxo complexes [W(IV)(OR')(S(2)C(2)Me(2))(2)](1)(-), including R' = Ph (1) and Pr(i)() (3). Reaction of 1 and 3 with Me(3)NO gives the cis-octahedral complexes [W(VI)O(OR')(S(2)C(2)Me(2))(2)](1)(-), including R' = Ph (6) and Pr(i)() (8). These W(IV,VI) complexes are considered unconstrained versions of protein-bound sites of DMSOR and TMAOR (DMSOR = dimethylsulfoxide reductase, TMAOR = trimethylamine N-oxide reductase) members of the title enzyme family. The structure of 6 and the catalytic center of one DMSO reductase isoenzyme have similar overall stereochemistry and comparable bond lengths. The minimal oxo transfer reaction paradigm thought to apply to enzymes, W(IV) + XO --> W(VI)O + X, has been investigated. Direct oxo transfer was demonstrated by isotope transfer from Ph(2)Se(18)O. Complex 1 reacts cleanly and completely with various substrates XO to afford 6 and product X in second-order reactions with associative transition states. The substrate reactivity order with 1 is Me(3)NO > Ph(3)AsO > pyO (pyridine N-oxide) > R(2)SO > Ph(3)PO. For reaction of 3 with Me(3)NO, k(2) = 0.93 M(-)(1) s(-)(1), and for 1 with Me(2)SO, k(2) = 3.9 x 10(-)(5) M(-)(1) s(-)(1); other rate constants and activation parameters are reported. These results demonstrate that bis(dithiolene)W(IV) complexes are competent to reduce both N-oxides and S-oxides; DMSORs reduce both substrate types, but TMAORs are reported to reduce only N-oxides. Comparison of k(cat)/K(M) data for isoenzymes and k(2) values for isostructural analogue complexes reveals that catalytic and stoichiometric oxo transfer, respectively, from substrate to metal is faster with tungsten and from metal to substrate is faster with molybdenum. These results constitute a kinetic metal effect in direct oxo transfer reactions for analogue complexes and for isoenzymes provided the catalytic sites are isostructural. The nature of the transition state in oxo transfer reactions of analogues is tentatively considered. This research presents the first kinetics study of substrate reduction via oxo transfer mediated by bis(dithiolene)tungsten complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号