首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
This work considers the problem of the optimal design of an hydrogen transmission network. This design problem includes the topology determination and the pipelines dimensioning problem. We define a local search method that simultaneously looks for the least cost topology of the network and for the optimal diameter of each pipe. These two problems were generally solved separately these last years. The application to the case of development of future hydrogen pipeline networks in France has been conducted at the local, regional and national levels. We compare the proposed approach with another using Tabu search heuristic.  相似文献   

2.
We investigate the optimal management problem of an M/G/1/K queueing system with combined F policy and an exponential startup time. The F policy queueing problem investigates the most common issue of controlling the arrival to a queueing system. We present a recursive method, using the supplementary variable technique and treating the supplementary variable as the remaining service time, to obtain the steady state probability distribution of the number of customers in the system. The method is illustrated analytically for exponential service time distribution. A cost model is established to determine the optimal management F policy at minimum cost. We use an efficient Maple computer program to calculate the optimal value of F and some system performance measures. Sensitivity analysis is also investigated.  相似文献   

3.
In this paper, a new type of stepsize, approximate optimal stepsize, for gradient method is introduced to interpret the Barzilai–Borwein (BB) method, and an efficient gradient method with an approximate optimal stepsize for the strictly convex quadratic minimization problem is presented. Based on a multi-step quasi-Newton condition, we construct a new quadratic approximation model to generate an approximate optimal stepsize. We then use the two well-known BB stepsizes to truncate it for improving numerical effects and treat the resulted approximate optimal stepsize as the new stepsize for gradient method. We establish the global convergence and R-linear convergence of the proposed method. Numerical results show that the proposed method outperforms some well-known gradient methods.  相似文献   

4.
首先研究了分、混流排水方式对污水处理系统与海绵城市的影响,并在小区域内将泊松盘采样的雨水口连成管网,用树型动态规划给出小区域管网在经济上的最优解,根据用地类型与管网现状进行管网改造的经济概算。以设定重现期下不发生明显的截留式溢流为强约束条件,对所有小区域进行0-1规划,得到一组解集,并取规划解集中的每一个解,计算征地谈判时间、由错接造成的污水排放流量等指标。在此基础上,以深圳市茅洲河光明片区为例,通过收集DEM数据、用地类型降雨量、地理环境与人文环境等资料,计算光明新区的街区雨量、街区污水量、街区施工建设费用,使用判定模型得到光明新区的排水方案图,并生成选择方案的各项指标以供参考。  相似文献   

5.
We justify the application of the averaging method to optimal control problems for systems of differential equations on the half-line. For optimal control problems for systems of differential equations linear in the control, we prove the existence of optimal controls for the exact and averaged problems. We show that an optimal control in the averaged problem is ɛ-optimal in the exact problem.  相似文献   

6.
In this paper, we examine a queueing problem motivated by the pipeline polling protocol in satellite communications. The model is an extension of the cyclic queueing system withM-limited service. In this service mechanism, each queue, after receiving service on cyclej, makes a reservation for its service requirement in cyclej + 1. The main contribution to queueing theory is that we propose an approximation for the queue length and sojourn-time distributions for this discipline. Most approximate studies on cyclic queues, which have been considered before, examine the means only. Our method is an iterative one, which we prove to be convergent by using stochastic dominance arguments. We examine the performance of our algorithm by comparing it to simulations and show that the results are very good.  相似文献   

7.
We consider an optimal dividends problem with transaction costs where the reserves are modeled by a spectrally negative Lévy process. We make the connection with the classical de Finetti problem and show in particular that when the Lévy measure has a log-convex density, then an optimal strategy is given by paying out a dividend in such a way that the reserves are reduced to a certain level c1 whenever they are above another level c2. Further we describe a method to numerically find the optimal values of c1 and c2.  相似文献   

8.
We present a practical implementation of an optimal first-order method, due to Nesterov, for large-scale total variation regularization in tomographic reconstruction, image deblurring, etc. The algorithm applies to μ-strongly convex objective functions with L-Lipschitz continuous gradient. In the framework of Nesterov both μ and L are assumed known—an assumption that is seldom satisfied in practice. We propose to incorporate mechanisms to estimate locally sufficient μ and L during the iterations. The mechanisms also allow for the application to non-strongly convex functions. We discuss the convergence rate and iteration complexity of several first-order methods, including the proposed algorithm, and we use a 3D tomography problem to compare the performance of these methods. In numerical simulations we demonstrate the advantage in terms of faster convergence when estimating the strong convexity parameter μ for solving ill-conditioned problems to high accuracy, in comparison with an optimal method for non-strongly convex problems and a first-order method with Barzilai-Borwein step size selection.  相似文献   

9.
We consider a finite element method (FEM) with arbitrary polynomial degree for nonlinear monotone elliptic problems. Using a linear elliptic projection, we first give a new short proof of the optimal convergence rate of the FEM in the L2 norm. We then derive optimal a priori error estimates in the H1 and L2 norm for a FEM with variational crimes due to numerical integration. As an application, we derive a priori error estimates for a numerical homogenization method applied to nonlinear monotone elliptic problems. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 955–969, 2016  相似文献   

10.
A time-dependent minimization problem for the computation of a mixed L 2-Wasserstein distance between two prescribed density functions is introduced in the spirit of Ref. 1 for the classical Wasserstein distance. The optimum of the cost function corresponds to an optimal mapping between prescribed initial and final densities. We enforce the final density conditions through a penalization term added to our cost function. A conjugate gradient method is used to solve this relaxed problem. We obtain an algorithm which computes an interpolated L 2-Wasserstein distance between two densities and the corresponding optimal mapping.  相似文献   

11.
Estimation of a quadratic functional of a function observed in the Gaussian white noise model is considered. A data-dependent method for choosing the amount of smoothing is given. The method is based on comparing certain quadratic estimators with each other. It is shown that the method is asymptotically sharp or nearly sharp adaptive simultaneously for the “regular” and “irregular” region. We consider lp bodies and construct bounds for the risk of the estimator which show that for p=4 the estimator is exactly optimal and for example when p ∈[3,100], then the upper bound is at most 1.055 times larger than the lower bound. We show the connection of the estimator to the theory of optimal recovery. The estimator is a calibration of an estimator which is nearly minimax optimal among quadratic estimators. Writing of this article was financed by Deutsche Forschungsgemeinschaft under project MA1026/6-2, CIES, France, and Jenny and AnttiWihuri Foundation.  相似文献   

12.
The FFT‐based homogenization method of Moulinec–Suquet has recently attracted attention because of its wide range of applicability and short computational time. In this article, we deduce an optimal a priori error estimate for the homogenization method of Moulinec–Suquet, which can be interpreted as a spectral collocation method. Such methods are well‐known to converge for sufficiently smooth coefficients. We extend this result to rough coefficients. More precisely, we prove convergence of the fields involved for Riemann‐integrable coercive coefficients without the need for an a priori regularization. We show that our L2 estimates are optimal and extend to mildly nonlinear situations and Lp estimates for p in the vicinity of 2. The results carry over to the case of scalar elliptic and curl ? curl‐type equations, encountered, for instance, in stationary electromagnetism. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper we present a new approach to solve a two-level optimization problem arising from an approximation by means of the finite element method of optimal control problems governed by unilateral boundary-value problems. The problem considered is to find a minimum of a functional with respect to the control variablesu. The minimized functional depends on control variables and state variablesx. The latter are the optimal solution of an auxiliary quadratic programming problem, whose parameters depend onu.Our main idea is to replace this QP problem by its dual and then apply the barrier penalty method to this dual QP problem or to the primal one if it is in an appropriate form. As a result we obtain a problem approximating the original one. Its good property is the differentiable dependence of state variables with respect to the control variables. Furthermore, we propose a method for finding an approximate solution of a penalized lower-level problem if the optimal solution of the original QP problem is known. We apply the result obtained to some optimal shape design problems governed by the Dirichlet-Signorini boundary-value problem.This research was supported by the Academy of Finland and the Systems Research Institute of the Polish Academy of Sciences.  相似文献   

14.
Abstract

We provide a modified augmented Lagrange method coupled with a Tikhonov regularization for solving ill-posed state constrained elliptic optimal control problems with sparse controls. We consider a linear quadratic optimal control problem without any additional L2 regularization terms. The sparsity is guaranteed by an additional L1 term. Here, the modification of the classical augmented Lagrange method guarantees us uniform boundedness of the multiplier that corresponds to the state constraints. We present a coupling between the regularization parameter introduced by the Tikhonov regularization and the penalty parameter from the augmented Lagrange method, which allows us to prove strong convergence of the controls and their corresponding states. Moreover, convergence results proving the weak convergence of the adjoint state and weak*-convergence of the multiplier are provided. Finally, we demonstrate our method in several numerical examples.  相似文献   

15.
Optimal sharing     
We investigate a sharing method to distribute a given quantity of resources equitably through a capacity-constrained distribution network. The sharing, called an optimal sharing, not only maximizes the minimum share but also minimizes the maximum share. The optimal sharing is obtained in time O(|T| c(n e)) where |T| is the number of sinks in the network andc(n, e) is the time required to solve the maximum flow problem.  相似文献   

16.
We study the problem of optimal control of the distribution of axisymmetric vertical or radial thermal displacements in a given section of an unbounded layer. Using the method of the inverse problem of thermoelasticity we construct the solution of the control problem. For specific cases of heating of the layer we give a numerical analysis of the behavior of the optimal control.Translated fromMatematicheskie Metody i Fiziko-Mekhanicheskie Polya, Issue 34, 1991, pp. 55–61.  相似文献   

17.
This article studies a numerical solution method for a special class of continuous time linear programming problems denoted by (SP). We will present an efficient method for finding numerical solutions of (SP). The presented method is a discrete approximation algorithm, however, the main work of computing a numerical solution in our method is only to solve finite linear programming problems by using recurrence relations. By our constructive manner, we provide a computational procedure which would yield an error bound introduced by the numerical approximation. We also demonstrate that the searched approximate solutions weakly converge to an optimal solution. Some numerical examples are given to illustrate the provided procedure.  相似文献   

18.
High dimensional polynomial interpolation on sparse grids   总被引:2,自引:0,他引:2  
We study polynomial interpolation on a d-dimensional cube, where d is large. We suggest to use the least solution at sparse grids with the extrema of the Chebyshev polynomials. The polynomial exactness of this method is almost optimal. Our error bounds show that the method is universal, i.e., almost optimal for many different function spaces. We report on numerical experiments for d = 10 using up to 652 065 interpolation points. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
We propose and analyze an application of a fully discrete C2 spline quadrature Petrov‐Galerkin method for spatial discretization of semi‐linear parabolic initial‐boundary value problems on rectangular domains. We prove second order in time and optimal order H1 norm convergence in space for the extrapolated Crank‐Nicolson quadrature Petrov‐Galerkin scheme. We demonstrate numerically both L2 and H1 norm optimal order convergence of the scheme even if the nonlinear source term is not smooth. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005.  相似文献   

20.
In this article, we introduce a new method to analyze the convergence of the standard finite element method for variational inequalities with noncoercive operators. We derive an optimal L error estimate by combining the Bensoussan-Lions algorithm with the concept of subsolutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号