首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pharmacological therapy is widely used in the treatment of muscle injuries. On the other hand, low‐level laser therapy (LLLT) arises as a promising nonpharmacological treatment. The aim of this study was to analyze the effects of sodium diclofenac (topical application) and LLLT on morphological aspects and gene expression of biochemical inflammatory markers. We performed a single trauma in tibialis anterior muscle of rats. After 1 h, animals were treated with sodium diclofenac (11.6 mg g‐1 of solution) or LLLT (810 nm; continuous mode; 100 mW; 3.57 W cm?2; 1, 3 or 9 J; 10, 30 or 90 s). Histological analysis and quantification of gene expression (real‐time polymerase chain reaction—RT‐PCR) of cyclooxygenase 1 and 2 (COX‐1 and COX‐2) and tumor necrosis factor‐alpha (TNF‐α) were performed at 6, 12 and 24 h after trauma. LLLT with all doses improved morphological aspects of muscle tissue, showing better results than injury and diclofenac groups. All LLLT doses also decreased (< 0.05) COX‐2 compared to injury group at all time points, and to diclofenac group at 24 h after trauma. In addition, LLLT decreased (< 0.05) TNF‐α compared both to injury and diclofenac groups at all time points. LLLT mainly with dose of 9 J is better than topical application of diclofenac in acute inflammation after muscle trauma.  相似文献   

2.
It remains unknown if the oxidative stress can be regulated by low‐level laser therapy (LLLT) in lung inflammation induced by intestinal reperfusion (i‐I/R). A study was developed in which rats were irradiated (660 nm, 30 mW, 5.4 J) on the skin over the bronchus and euthanized 2 h after the initial of intestinal reperfusion. Lung edema and bronchoalveolar lavage fluid neutrophils were measured by the Evans blue extravasation and myeloperoxidase (MPO) activity respectively. Lung histology was used for analyzing the injury score. Reactive oxygen species (ROS) was measured by fluorescence. Both expression intercellular adhesion molecule 1 (ICAM‐1) and peroxisome proliferator‐activated receptor‐y (PPARy) were measured by RT‐PCR. The lung immunohistochemical localization of ICAM‐1 was visualized as a brown stain. Both lung HSP70 and glutathione protein were evaluated by ELISA. LLLT reduced neatly the edema, neutrophils influx, MPO activity and ICAM‐1 mRNA expression. LLLT also reduced the ROS formation and oppositely increased GSH concentration in lung from i‐I/R groups. Both HSP70 and PPARy expression also were elevated after laser irradiation. Results indicate that laser effect in attenuating the acute lung inflammation is driven to restore the balance between the pro‐ and antioxidants mediators rising of PPARy expression and consequently the HSP70 production.  相似文献   

3.
One inescapable feature of life on the earth is exposure to ionizing radiation. The thyroid gland is one of the most sensitive organs to gamma‐radiation and endocrine disrupters. Low‐level laser therapy (LLLT) has been used to stimulate tissue repair, and reduce inflammation. The aim of this study was to gauge the value of using Helium–Neon laser to repair the damaged tissues of thyroid gland after gamma‐irradiation. Albino rats were used in this study (144 rats), divided into control, gamma, laser, and gamma plus laser‐irradiated groups, each group was divided into six subgroups according to time of treatment (total six sessions). Rats were irradiated once with gamma radiation (6 Gy), and an external dose of laser (Wavelength 632.8 nm, 12 mW, CW, Illuminated area 5.73 cm2, 2.1 mW cm?2, 120 s, 1.4 J, 0.252 J cm?2) twice weekly localized on thyroid region of the neck, for a total of six sessions. Animals were sacrificed after each session. Analysis included thyroid function, oxidative stress markers, liver function and blood picture. Results revealed improvement in thyroid function, liver function and antioxidant levels, and the blood cells count after LLLT.  相似文献   

4.
This study investigated the effects of low‐level laser therapy (LLLT) in the liver function, structure and inflammation in a experimental model of carbon tetrachloride (CCl4)‐induced liver cirrhosis. Wistar rats were divided into Control, LLLT, CCl4 and CCl4+LLLT groups. CCl4 groups received CCl4 (0.4 g kg?1; i.p.), three times a week, for 12 weeks. A 830 nm LLLT was performed with a continuous wave, 35 mW, 2.5 J cm?2 per point, applied to four points of the liver (right and left upper and lower extremities, in the four lobes of the liver) for 2 weeks. Liver structure and inflammation (cirrhotic areas, collagen deposition, inflammation, density of Kupffer and hepatic stellate cells) and function (aspartate aminotransferase, alkaline phosphatase, gamma glutamyltransferase, lactate dehydrogenase, total proteins and globulins) were evaluated. LLLT significantly reduced CCl4‐increased aspartate aminotransferase (P < 0.001), alkaline phosphatase (P < 0.001), gamma‐glutamyl transferase (P < 0.001) and lactate dehydrogenase (P < 0.01) activity, as well as total proteins (P < 0.05) and globulins (P < 0.01). LLLT also reduced the number of cirrhotic areas, the collagen accumulation and the hepatic inflammatory infiltrate. Of note, LLLT reduced CCl4‐increased number of Kupffer cells (P < 0.05) and hepatic stellate cells (P < 0.05). We conclude that LLLT presents beneficial effects on liver function and structure in an experimental model of CCl4‐induced cirrhosis.  相似文献   

5.
In this study, we aimed to analyze the effects of low‐level laser therapy (LLLT; 660 nm) on levels of protein expression of inflammatory mediators after cutting Achilles tendon of rats. Thirty Wistar male rats underwent partial incisions of the left Achilles tendon, and were divided into three groups of 10 animals according to the time of euthanasia after injury: 6, 24 and 72 h. Each group was then divided into control group and LLLT group (treated with 100 mW, 3.57 W cm?2, 0.028 cm2, 214 J cm?2, 6 J, 60 s, single point). In LLLT group, animals were treated once time per day until the time of euthanasia established for each group. The group treated with LLLT showed a significant reduction of IL‐1β compared with control groups at three time points (6 h: P = 0.0401; 24 h: P = 0.0015; 72 h: P = 0.0463). The analysis of IL‐6 showed significant reduction only in the LLLT group at 72 h compared with control group (P = 0.0179), whereas IL‐10 showed a significant increase in the treated group compared with control group at three experimental times (6 h: P = 0.0007; 24 h: P = 0.0256; 72 h: P < 0.0001). We conclude that LLLT is an important modulator of inflammatory cytokines release after injury in Achilles tendon.  相似文献   

6.
The aim of this study was to evaluate the effects of a Gallium Arsenide (GaAs) laser, using a high final energy of 4.8 J, during muscle regeneration after cryoinjury. Thirty Wistar rats were divided into three groups: Control (C, n = 10); Injured (I, n = 10) and Injured and laser treated (Injured/LLLT, n = 10). The cryoinjury was induced in the central region of the tibialis anterior muscle (TA). The applications of the laser (904 nm, 50 mW average power) were initiated 24 h after injury, at energy density of 69 J cm?1 for 48 s, for 5 days, to two points of the lesion. Twenty‐four hours after the final application, the TA muscle was removed and frozen in liquid nitrogen to assess the general muscle morphology and the gene expression of TNF‐α, TGF‐β, MyoD, and Myogenin. The Injured/LLLT group presented a higher number of regenerating fibers and fewer degenerating fibers (P < 0.05) without changes in the collagen remodeling. In addition, the Injured/LLLT group presented a significant decrease in the expression of TNF‐α and myogenin compared to the injured group (P < 0.05). The results suggest that the GaAs laser, using a high final energy after cryoinjury, promotes muscle recovery without changing the collagen remodeling in the muscle extracellular matrix.  相似文献   

7.
Muscle injuries represent ca 30% of sports injuries and excessive stretching of muscle causes more than 90% of injuries. Currently the most used treatments are nonsteroidal anti‐inflammatory drugs (NSAIDs), however, in last years, low‐level laser therapy (LLLT) is becoming an interesting therapeutic modality. The aim of this study was to evaluate the effect of single and combined therapies (LLLT, topical application of diclofenac and intramuscular diclofenac) on functional and biochemical aspects in an experimental model of controlled muscle strain in rats. Muscle strain was induced by overloading tibialis anterior muscle of rats. Injured groups received either no treatment, or a single treatment with topical or intramuscular diclofenac (TD and ID), or LLLT (3 J, 810 nm, 100 mW) 1 h after injury. Walking track analysis was the functional outcome and biochemical analyses included mRNA expression of COX‐1 and COX‐2 and blood levels of prostaglandin E2 (PGE2). All treatments significantly decreased COX‐1 and COX‐2 gene expression compared with injury group (< 0.05). However, LLLT showed better effects than TD and ID regarding PGE2 levels and walking track analysis (< 0.05). We can conclude that LLLT has more efficacy than topical and intramuscular diclofenac in treatment of muscle strain injury in acute stage.  相似文献   

8.
9.
The use of gold nanoparticles as radiosensitizers is an effective way to boost the killing efficacy of radiotherapy while drastically limiting the received dose and reducing the possible damage to normal tissues. Herein, we designed aggregation‐induced emission gold clustoluminogens (AIE‐Au) to achieve efficient low‐dose X‐ray‐induced photodynamic therapy (X‐PDT) with negligible side effects. The aggregates of glutathione‐protected gold clusters (GCs) assembled through a cationic polymer enhanced the X‐ray‐excited luminescence by 5.2‐fold. Under low‐dose X‐ray irradiation, AIE‐Au strongly absorbed X‐rays and efficiently generated hydroxyl radicals, which enhanced the radiotherapy effect. Additionally, X‐ray‐induced luminescence excited the conjugated photosensitizers, resulting in a PDT effect. The in vitro and in vivo experiments demonstrated that AIE‐Au effectively triggered the generation of reactive oxygen species with an order‐of‐magnitude reduction in the X‐ray dose, enabling highly effective cancer treatment.  相似文献   

10.
Thermoplastic polyamide elastomers were obtained by polymerization of aminobenzoyl‐substituted telechelics derived from poly(tetrahydrofuran)‐diols (number‐average molecular weight: 1400 or 2000 g mol?1) with several diacid dichlorides (terephthaloyl dichloride, 4,4′‐biphenyldicarbonyl dichloride, or 2,6‐naphthalenedicarbonyl dichloride) and chlorotrimethylsilane in N,N‐dimethylacetamide at 0–20 °C. The as‐prepared polymers had melting temperatures above 190 °C and exhibited elastic properties at room temperature, as evidenced by dynamic mechanical analysis and stress–strain measurements. The polymer with 2,6‐naphthalenedicarboxamide hard segments had the widest rubbery plateau within the series, the highest extension at break, and good recovery properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1449–1460, 2004  相似文献   

11.
12.
A novel and powerful method of microstructure control in polyolefins is presented. By dispersing tiny amounts of sorbitol derivatives in the polymer, the subsequent crystal growth can be controlled with modest prior flow‐fields; in particular high levels of preferred orientation are generated in the resultant crystals. Under shear flow, the additive forms highly extended crystals which lie parallel to the flow‐field and which serve to direct the crystallisation of the polymer leading to a massive amplification of the anisotropy present in the melt.

TEM image of a carbon replica taken from an etched surface of a PE sample containing 1% of DBS.  相似文献   


13.
14.
Synthesis of low‐dimensional carbon nanomaterials such as carbon nanotubes (CNTs) is a key driver for achieving advances in energy storage, computing, and multifunctional composites, among other applications. Here, we report high‐yield thermal chemical vapor deposition (CVD) synthesis of CNTs catalyzed by reagent‐grade common sodium‐containing compounds, including NaCl, NaHCO3, Na2CO3, and NaOH, found in table salt, baking soda, and detergents, respectively. Coupled with an oxidative dehydrogenation reaction to crack acetylene at reduced temperatures, Na‐based nanoparticles have been observed to catalyze CNT growth at temperatures below 400 °C. Ex situ and in situ transmission electron microscopy (TEM) reveal unique CNT morphologies and growth characteristics, including a vaporizing Na catalyst phenomenon that we leverage to create CNTs without residual catalyst particles for applications that require metal‐free CNTs. Na is shown to synthesize CNTs on numerous substrates, and as the first alkali group metal catalyst demonstrated for CNT growth, holds great promise for expanding the understanding of nanocarbon synthesis.  相似文献   

15.
The synthesis of well‐defined polymers in a low‐volume, combinatorial fashion has long been a goal in polymer chemistry. Here, we report the preparation of a wide range of highly controlled homo and block co‐polymers by Enz‐RAFT (enzyme‐assisted reversible addition–fragmentation chain transfer) polymerization in microtiter plates in the open atmosphere. The addition of 1 μm glucose oxidase (GOx) to water/solvent mixtures enables polymerization reactions to proceed in extremely low volumes (40 μL) and low radical concentrations. This procedure provides excellent control and high conversions across a range of monomer families and molecular weights, thus avoiding the need to purify for screening applications. This simple technique enables combinatorial polymer synthesis in microtiter plates on the benchtop without the need of highly specialized synthesizers and at much lower volumes than is currently possible by any other technique.  相似文献   

16.
An overview of methods for the initiation of radical chain reactions by specific initiator compounds, which generate radicals, is given. These can be utilized to initiate any kind of radical chain reaction by transforming substrates into the desired radical intermediates. Azo initiators, peroxides, nitroxides, trialkylboranes, dialkyl zinc compounds, and type I photoinitiators are discussed, as well as methods of redox‐ and sonochemical initiation. Methods of direct radical formation from the substrates, such as photoredox catalysis or high‐energy irradiation, are not included. The focus of this review lies on rather “low” temperatures in the range of 50 °C down to ?78 °C, which can be useful to achieve more selective reactions. Illustrative applications of such radical chain initiators in a variety of reactions are discussed, including stereoselective ones and polymerizations.  相似文献   

17.
The dehydrogenation of organosilanes (RxSiH4?x) under the formation of Si?Si bonds is an intensively investigated process leading to oligo‐ or polysilanes. The reverse reaction is little studied. To date, the hydrogenolysis of Si?Si bonds requires very harsh conditions and is very unselective, leading to multiple side products. Herein, we describe a new catalytic hydrogenation of oligo‐ and polysilanes that is highly selective and proceeds under mild conditions. New low‐valent nickel hydride complexes are used as catalysts and secondary silanes, RR′SiH2, are obtained as products in high purity.  相似文献   

18.
The low‐temperature synthesis of inorganic materials and their interfaces at the atomic and molecular level provides numerous opportunities for the design and improvement of inorganic materials in heterogeneous catalysis for sustainable chemical energy conversion or other energy‐saving areas. Using suitable molecular precursors for functional inorganic nanomaterial synthesis allows for facile control over uniform particle size distribution, stoichiometry, and leads to desired chemical and physical properties. This Minireview outlines some advantages of the molecular precursor approach in light of selected recent developments of molecule‐to‐nanomaterials synthesis for renewable energy applications, relevant for the oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and overall water‐splitting.  相似文献   

19.
20.
Short amines, such as ethanolamines and ethylenediamines, are important compounds in today's bulk and fine chemicals industry. Unfortunately, current industrial manufacture of these chemicals relies on fossil resources and requires rigorous safety measures when handling explosive or toxic intermediates. Inspired by the elegant working mechanism of aldolase enzymes, a novel heterogeneously catalyzed process—reductive aminolysis—was developed for the efficient production of short amines from carbohydrates at low temperature. High‐value bio‐based amines containing a bio‐derived C2 carbon backbone were synthesized in one step with yields up to 87 C%, in the absence of a solvent and at a temperature below 405 K. A wide variety of available primary and secondary alkyl‐ and alkanolamines can be reacted with the carbohydrate to form the corresponding C2‐diamine. The presented reductive aminolysis is therefore a promising strategy for sustainable synthesis of short, acyclic, bio‐based amines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号