首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
In the microwave and millimeter wave spectra of HNCO, the b-type transitions between the Ka = 0 and 1 levels in the lowest excited vibrational state have been observed. Because of strong a-type Coriolis resonances among the three bending excited states the energy difference between the levels for Ka = 0 and 1 is much smaller in the lowest excited state than in the ground state. The subband origin of these b-type transitions has been found in the millimeter wave region at 275 697.309 MHz (9.1963 cm?1). The effect of the Coriolis resonances is discussed in relation to the molecular quasi-linearity and is compared with the case of HNCS.  相似文献   

2.
The microwave and millimeter wave spectra of HNCS in the three bending excited states, v4 = 1, v5 = 1, and v6 = 1, have been measured. The qR0, qR1, and qR2 branches for each of these three states and the qR3 branch for the lowest excited state have been assigned. Effective rotational and centrifugal distortion constants have been determined for each vibrational and Ka-rotational sub-state. Two local resonances, caused by the Coriolis induced asymmetry interaction and a b-type Coriolis resonance, allow unambiguous confirmation of the assignment of the state v6 = 1, the first excited state of the out-of-plane vibration.  相似文献   

3.
The two lowest vibrational states of 35Cl35ClO2, v4=1 (A′) and v6=1 (A″), were investigated between 223 and 500 GHz. More than 250 rotational transitions were recorded with J and Ka up to 71 and 34, respectively. The spectra are heavily perturbed by strong c-type and weaker a-type Coriolis interactions. Near degeneracies of rotational levels of the two vibrational states having ΔJ=0, ΔKa=5 to 1, and ΔKaKc= odd cause moderate to severe perturbations in the rotational structure, preventing the states from being fit as isolated ones. Distortions in the hyperfine structure facilitated the assignment of rotational quantum numbers. Several resonantly interacting levels with ΔKa=5 to 2 were accessed, and a number of transitions between the states were observed. While resonant Coriolis interaction with ΔKa=1 occurs only at Ka>40, the effects of this interaction are so severe that nonresonant interaction considerably perturbs the highest KaQ-branches observed. The observed transitions could be fit to within experimental uncertainties employing the first-order Coriolis coupling constants fixed to those from the harmonic force field, sextic distortion constants fixed to those of the ground state, and some higher order Coriolis terms. The energy difference calculated from the fit agrees well with that obtained from the matrix-isolation infrared spectrum. Quadrupole coupling constants were determined for both Cl nuclei and both vibrational states.  相似文献   

4.
Fairly strong, regularly spaced absorption lines have been observed in the microwave spectrum of HNCS and assigned to b-type, Ka = 0 ← 1, Q-branch transitions arising from molecules in the lowest excited vibrational state. The Fortrat diagram of these lines has the appearance of a c-type Q branch, which is impossible in HNCS because of its symmetry. This anomalous b-type Q-branch spectrum is caused by strong a-type Coriolis interactions among the three low-lying bending modes; the Ka = 1 levels of the lowest excited vibrational state are perturbed and shifted lower in energy than the Ka = 0 levels for each J. This interpretation has been confirmed by the observation of P- and R-branch transitions associated with this Q branch. The band origin has been determined to be ?40 104.287 MHz (?1.3377 cm?1). The inversion of the Ka = 0 and 1 energy levels is consistent with the interpretation of HNCS as a quasi-linear molecule.  相似文献   

5.
The rotational spectra of six excited vibrational states of dimethylallene were measured and assigned to the corresponding vibrational levels, and for three more excited state spectra at least the rotational constants could be determined. Between the two lowest excited levels of symmetry species b2 and b1 of group C2v a strong a-type Coriolis coupling was found to exist. The evaluation of the resulting perturbation by a diagonalization of the energy matrix yielded ζ(a) = 0.36 and a precise value for the vibrational energy difference 48.761 GHz (1.6 cm?1). The state b2 is believed to be the first excited torsional substate (01, 10)1 of methyl internal rotation, and the rotational transitions of this state as well as those of the strongly coupled state b1 presented very irregular multiplet splittings. On the other hand, the splittings of the next-higher excited state of species a2 which could be identified as the partner torsional substate (01, 10)2, followed the regular pattern, yielding an internal rotation barrier V3 (2079 cal/mole) not unlike that derived earlier from ground state splittings.  相似文献   

6.
Measurements of the rotational spectrum of the C4v molecule IOF5 are reported for the excited vibrational state v11(E) = 1 for the transitions J13 ← 12, 14 ← 13, 16 ← 15, and 17 ← 16 (55–72 GHz) including the observation of the kl = −1 (q), l-doubling effect. Detailed assignments of the E-state spectrum are presented based on the overlapping quadrupole structure. These data are analyzed together with earlier results for the excited vibrational state v6(B1) = 1 to give information concerning the ν6(B1)-ν11(E) Coriolis interaction and the (Δl, Δk) = (2, 2) (q+) and (2, −2) (q)l-resonance interactions. It is found that q11 = −2.57(10) MHz, |q11+| = 0.094(20) MHz, Δ = ν6ν11 = 45.2(7) cm, ζ11,11z = +0.18(1) and |ζ6,11y| = 0.73(4).  相似文献   

7.
The microwave spectrum of 2-cycloheptene-1-one, an unsaturated cyclic ketone, has been studied in the regions 26.5–40 and 7.0–12.4 GHz. An analysis of the ground-state “a”-type transitions yielded the rotational constants (in MHz): A = 2997.27, B = 2049.24, C = 1399.76. The “a”-type transitions of an excited vibrational state were also assigned, giving A = 3000.51, B = 2046.65, C = 1398.88. The centrifugal distortion constants, DJ and DJK, were needed to fit the data adequately. A study of the Stark effect yielded the dipole moment components (in debye) μa = 3.63 ± 0.023 and μc = 0.882 ± 0.040. The μb component could not be determined from the Stark effect data. These data are used to discuss the molecular conformation of cycloheptene-1-one.  相似文献   

8.
The rotational spectrum of 3-methylcyclopentanone has been observed in the frequency region from 18.0 to 26.5 GHz. Both a-type and b-type transitions in the ground vibrational state and a-type transitions in five excited states have been assigned. The ground state rotational constants are determined to be A = 5423.32 ± 0.18, B = 1949.51 ± 0.01, and C = 1529.59 ± 0.01 MHz. Analysis of the measured quadratic Stark effects gives the dipole moment components ∥μa∥ = 2.97 ± 0.02, ∥μb∥ = 1.00 ± 0.03, ∥μc∥ = 0.18 ± 0.06, and the total dipole moment ∥μt∥ = 3.14 ± 0.03 D. These data are consistent with a twisted-ring conformation with a methyl group in the equatorial position.  相似文献   

9.
The microwave spectra of 4-thiacyclohexanone in the ground state and eight vibrationally excited states have been studied in the frequency region 18.0–40.0 GHz and the corresponding rotational constants have been determined. The following values of the ground-state rotational constants (MHz) were obtained from the analysis of the a-type transitions: A = 3935.149 (0.031), B = 1829.444 (0.001), and C = 1364.609 (0.001). Analysis of the Stark effect gives for the dipole components (in Debye units) μa = 1.409 (0.002), μc = 0.391 (0.064). These data are consistent with a chair conformation for the ring. A phisically reasonable set of structural parameters which reproduce the ground-state rotational constants has been derived. A qualitative estimate of the low-frequency vibrational modes was obtained from relative-intensity measurements. The lowest vibrational frequency is believed to be a ring-bending mode and it occurs at 77 ± 22 cm?1 while the ring-twisting mode is at 204 ± 27 cm?1.  相似文献   

10.
Two sets of vibrational satellites have been observed in the rotational spectrum of sodium tetrahydroborate NaBH4, and have been assigned to the non-degenerate, Na—BH4 stretching and the degenerate BH4 rocking (or internal rotation) states. The observation was extended from the J = 11 ← 10 up to J = 20 ← 19 transitions. The vibrational satellites showed anomalous K structure; higher-K lines of the non-degenerate state appeared at higher frequencies, in reverse to those of the ground state, whereas the spectra in the degenerate state exhibited a K pattern similar to but somewhat more widely spread than that of the ground state. These anomalies are ascribed to the Coriolis interaction between the two excited vibrational states. The spectra observed were analysed using a C3v symmetric-top rotational Hamiltonian, which took into account the Coriolis interaction explicitly. The A rotational constants, the energy difference δE between the two interacting vibrational states, and the first- and second-order Coriolis interaction constants have been derived.  相似文献   

11.
The room-temperature rotational spectrum of phenylacetylene (C6H5CCH), was studied at frequencies up to 340 GHz. Extensive new measurements, covering rotational transitions with quantum number values up to J=140 and Ka=59, allowed determination of precise spectroscopic constants for the ground state and for the lowest two excited vibrational states, v24=1 and v36=1. The two excited states belong to the lowest B1 and B2 symmetry normal modes and their rotational transitions are very strongly perturbed by a-axis Coriolis resonance. A successful fit of the resonance is reported, resulting in and , in good agreement with results of ab initio computations.  相似文献   

12.
Measurements of the microwave spectrum of the C4v molecule IF5 in the excited vibrational states v5(B1) = 1 and v9(E) = 1 are reported for the transitions J4 → 5, 5 → 6, 6 → 7, 8 → 9, and 9 → 10 (27–55 GHz). The Coriolis resonance interaction between these two states is analyzed by diagonalization of Hamiltonian matrices of dimension 3 × (2J + 1) in which all (Δlk) = (±2, ±2)(q+), (±2, ±2)(q?), and (0, ±4)(R6) interactions are included as off-diagonal terms in addition to the v5 = 1 ? v9 = 1, l9 = ±1(R59) Coriolis interaction. In the v9 = 1 state spectra, the B1B2l-doubling of the kl = ?1 transitions and A1A2 splittings of the kl = ?3 transitions and B1B2 splittings of the kl = +3 transitions, all enhanced by the Coriolis resonance, have been observed and measured. Least-squares refined rovibrational parameters for the v5 = 1 and v9 = 1 states are reported and a preliminary value for the rotational constant C9 has been obtained.  相似文献   

13.
The high resolution (0.004cm?1) Fourier transform infrared spectrum of the monodeuterated form of methyl fluoride, CH2DF, has been recorded and analysed in the v 3 and v 4 band region around 1420cm?1. Both bands, coming from A′ symmetry vibrations, have a/b hybrid character, although in v 3 the b-type component prevails over the a-type. The rotational structure has been analysed using a dyad model including c-type Coriolis coupling and high order vibrational resonance between these states. Accurate upper state molecular parameters and interaction terms have been obtained by fitting about 3270 assigned transitions to Watson's A-reduced Hamiltonian in the Ir representation. In addition, from a simultaneous fit of ground state combination differences coming from this analysis and 42 literature microwave transitions, an improved and more complete set of ground state constants, including three new sextic centrifugal distortion terms (ΦJK, ΦKJ and ΦK), has been derived.  相似文献   

14.
Microwave measurements in the interval from 6 to 133 GHz, consisting of 444 rotational transitions in the vibrational ground state of hydrazine with J ≤ 31 and Ka ≤ 6 were fit to an effective rotational Hamiltonian containing 9 asymmetric rotor constants, 14 NH2 inversion parameters, and 1 internal rotation parameter, with an overall standard deviation of the fit of 0.40 MHz. This set of parameters contains: (i) the three rotational constants; (ii) tunneling splitting constants for NH2 inversion at one end of the molecule, for NH2 inversion at both ends of the molecule, and for internal rotation through the trans barrier; (iii) two K-type doubling constants affecting the K = 1 levels; (iv) an a-type Coriolis interaction with matrix elements linear in K; and (v) various centrifugal distortion corrections to the above parameters. A consistent group theoretical formalism was used to label the energy levels and to select terms in the phenomenological rotational Hamiltonian. The Hamiltonian matrix, which is set up in a tunneling basis set, is of dimension 16×16 and contains only ΔKa = 0 matrix elements, asymmetric rotor effects being taken into account on the diagonal by terms from a Polo expansion in bn. Hyperfine splittings and barrier heights are not discussed.  相似文献   

15.
The microwave spectrum of bullvalene has been investigated in the region 18–40 GHz. In addition to transitions in the ground vibrational state, transitions arising from five excited vibrational states below 600 cm−1 have also been observed. A combination of microwave intensity measurements and infrared and Raman data has been utilized to assign these vibrations. Three of the vibrations are E-type modes at 241, 355, and 588 cm−1. One is an A1-type mode at 445 cm−1, and another is an A2-type at 266 cm−1. The microwave spectrum indicates the presence of a first-order Coriolis interaction for the E modes at 241 and 588 cm−1. The first-order Coriolis coupling constant q = 0.557 MHz for the 241 cm−1 vibration. The spectral results are consistent with C3v symmetry for bullvalene.  相似文献   

16.
Almost 300 new rotational transitions within the fundamental vibrational level v10=1 of propyne have been measured in selected regions between 495 and 925 GHz spanning the quantum numbers 28≤J≤54 and 0≤K≤16. The accuracies are mostly between 10 and 20 kHz. In addition, the J″=4 and 5 transitions near 85 and 103 GHz have been remeasured. Simultaneous analyses with refined rovibrational data have been performed, showing that even this lowest and seemingly isolated vibrational level needs a global treatment when high K transitions are involved. The global model with the v10=1 level coupled to the next higher cluster of levels, v10=2/v9=1, by Fermi and Coriolis resonances is necessary for a quantitative reproduction of both the rovibrational and rotational data within their experimental uncertainties. Included are also improved ground state spectroscopic parameters from a fit of previous pure rotational data and Δk=3 ground state combination loops as well as additional data obtained in course of the present study.  相似文献   

17.
Pure rotational transitions of a spherical top in a degenerate vibrational state have been observed directly for the first time with the help of pulsed microwave Fourier transform (MWFT) spectroscopy. Twelve rotational transitions in the v4 = 1 vibrational excited state of CD4 have been identified. The theoretical basis for the transition moments has been developed and the line strengths of the rotational transitions have been estimated. The measured rotational transition frequencies have been included in a reanalysis of the data from a previously recorded high-resolution FTIR spectrum of the ν2 and ν4 bands. The v4 = 1 state of CD4 is strongly coupled to the v2 = 1 state by Coriolis interaction. Thirty molecular parameters of the ν2ν4 dyad have been fitted finally from the combined microwave and infrared data. The microwave data are reproduced with a standard deviation of 42 kHz, and the infrared data with a standard deviation of 0.0002 cm?1; in each case, this is close to the estimated experimental prescision.  相似文献   

18.
The microwave and millimeter wave spectra of isothiocyanic acid, HNCS, in the ground vibrational state have been investigated in the frequency region 8–300 GHz. The a-type R-branch transitions have been assigned up to J = 25 and Ka = 4, and the a-type qQ1 branch transitions up to J = 45. No b-type transitions could be identified in the frequency region covered. The far infrared data reported by Krakow, Lord, and Neely [J. Mol. Spectrosc., 27, 148 (1968)] were combined with our millimeter wave data in order to determine reliable spectroscopic constants. The rotational Hamiltonian, Watson's formalism with S reduction, has been extended empirically to higher order to facilitate the fitting of the large centrifugal distortion effects. The obtained constants are:
A = 1357.3 GHz; B = 5883.4627 MHz; C = 5845.6113 MHz; DJ = 1.19393 kHz; DJK = ?1025.37 kHz; DK = 51.57 GHz; d1 = ?13.781 Hz; d2 = ?4.59 Hz.
The 14N quadrupole coupling constant has also been determined: χaa = 1.114 MHz.  相似文献   

19.
The microwave spectrum of tetrahydropyran-4-one has been studied in the frequency region 18 to 40 GHz. The rotational constants for the ground state and nine vibrationally excited states have been derived by fitting a-type R-branch transitions. The rotational constants for the ground state are (in MHz) A = 4566.882 ± 0.033, B = 2538.316 ± 0.003, C = 1805.878 ± 0.004. From information obtained from the gas-phase far-infrared spectrum and relative intensity measurements, these excited states are estimated to be ~ 100 cm?1 above the ground state for the first excited state of the ring-bending and ~ 185 cm?1 for the first excited state of the ring-twisting mode. Stark displacement measurements were made for several transitions and the dipole moment components determined by least-squares fitting of the displacements: (in Debye) |μa| = 1.693 (0.001), |μb| = 0.0, |μc| = 0.300 (0.013) yielding a total dipole moment μtot = 1.720 (0.003). A model calculation to reproduce the rotational parameters indicates that the data are consistent with the chair conformation.  相似文献   

20.
More than two thousand Stark resonances of the ν4 and 2ν2 band transitions of 14NH3 and 15NH3 were observed at Doppler-limited resolution with a CO laser. Fourier transform infrared spectroscopy on 15NH3 is also carried out. Thirty-six new microwave transitions including seven perturbation-enhanced transitions are observed in the v4 = 1 excited vibrational state of 14NH3 and 15NH3. Accuracies of all available spectroscopic data on the v4 = 1 and the v2 = 2 states are evaluated and analyses of the vibration-rotation spectra are performed. The Coriolis interaction between the closely lying v4 = 1 a (antisymmetric level) and v2 = 2 s (symmetric level) states is explicitly included in the analysis. Smaller Coriolis interactions between the v4 = 1 a and the v2 = 1 s states and between the v2 = 2 s and the v2 = v4 = 1 a states (i.e., (v1, v2, v3, v4) = (0 1 00 11)) are also taken into consideration. The accuracy in determination of the principal molecular constants is 10?6. The parameters thus obtained reproduce the frequencies of the vibration-rotation transitions and inversion transitions within the accuracy of 0.0024 cm?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号