首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was carried out to investigate the anti‐tumor effect and mechanism of hiporfin‐mediated photodynamic therapy (hiporfin‐PDT) in osteosarcoma. We found that hiporfin accumulated mainly in the cytoplasm of osteosarcoma cells in a time and concentration‐dependent manner. Hiporfin‐PDT inhibited the proliferation, induced apoptosis and produced cell cycle arrest at G2M in osteosarcoma cell lines. Hiporfin‐PDT increased the expression of cleaved‐caspase‐3, cleaved PARP‐1, Bax and RIP1 while it decreased the expression of Bcl‐2; in addition, low concentration of hiporfin increased LC3 conversion. Furthermore, cell death caused by hiporfin‐PDT could be rescued by Nec‐1 but not by Z‐VAD‐FMK. Production of reactive oxygen species was increased after hiporfin‐PDT. In vivo studies showed a significant decrease in tumor volume and weight after hiporfin‐PDT in all three tumor mouse models investigated (subcutaneous and orthotopic). Histological analysis showed widespread cell apoptosis and necrosis after treatment. Immunohistochemistry also showed upregulation of cleaved‐caspase‐3 and downregulation of Bcl‐2 after hiporfin‐PDT. These results indicate that hiporfin‐PDT exhibits a killing effect in osteosarcoma both in vitro and in vivo, which is associated with apoptosis and necroptosis, while autophagy plays a protective role. All these findings shed light on a potential future clinical use for hiporfin in the treatment of osteosarcoma.  相似文献   

2.
The concept of metronomic photodynamic therapy (mPDT) is presented, in which both the photosensitizer and light are delivered continuously at low rates for extended periods of time to increase selective tumor cell kill through apoptosis. The focus of the present preclinical study is on mPDT treatment of malignant brain tumors, in which selectivity tumor cell killing versus damage to normal brain is critical. Previous studies have shown that low‐dose PDT using 5‐aminolevulinic acid (ALA)‐induced protoporphyrin IX(PpIX) can induce apoptosis in tumor cells without causing necrosis in either tumor or normal brain tissue or apoptosis in the latter. On the basis of the levels of apoptosis achieved and model calculations of brain tumor growth rates, metronomic delivery or multiple PDT treatments, such as hyperfractionation, are likely required to produce enough tumor cell kill to be an effective therapy. In vitro studies confirm that ALA‐mPDT induces a higher incidence of apoptotic (terminal deoxynucleotidyl transferase‐mediated 2′‐deoxyuridine 5′‐triphosphate, sodium salt nick‐end labeling positive) cells as compared with an acute, high‐dose regimen (ALA‐αPDT). In vivo, mPDT poses two substantial technical challenges: extended delivery of ALA and implantation of devices for extended light delivery while allowing unencumbered movement. In rat models, ALA administration via the drinking water has been accomplished at very high doses (up to 10 times therapeutic dose) for up to 10 days, and ex vivo spectro‐fluorimetry of tumor (9L gliosarcoma) and normal brain demonstrates a 3–4 fold increase in the tumor‐to‐brain ratio of PpIX concentration, without evidence of toxicity. After mPDT treatment, histological staining reveals extensive apoptosis within the tumor periphery and surrounding microinvading colonies that is not evident in normal brain or tumor before treatment. Prototype light sources and delivery devices were found to be practical, either using a laser diode or light‐emitting diode (LED) coupled to an implanted optical fiber in the rat model or a directly implanted LED using a rabbit model. The combined delivery of both drug and light during an extended period, without compromising survival of the animals, is demonstrated. Preliminary evidence of selective apoptosis of tumor under these conditions is presented.  相似文献   

3.
Photodynamic therapy (PDT), in which 5‐ALA (a precursor for protoporphyrin IX, PpIX) is administered prior to exposure to light, is a nonscarring treatment for skin cancers. However, for deep tumors, ALA‐PDT is not always effective due to inadequate production of PpIX. We previously developed and reported a combination approach in which the active form of vitamin D3 (calcitriol) is given systemically prior to PDT to improve PpIX accumulation and to enhance PDT‐induced tumor cell death; calcitriol, however, poses a risk of hypercalcemia. Here, we tested a possible strategy to circumvent the problem of hypercalcemia by substituting natural dietary vitamin D3 (cholecalciferol; D3) for calcitriol. Oral D3 supplementation (10 days of a 10‐fold elevated D3 diet) enhanced PpIX levels 3‐ to 4‐fold, and PDT‐mediated cell death 20‐fold, in subcutaneous A431 tumors. PpIX levels and cell viability in normal tissues were not affected. Hydroxylated metabolic forms of D3 were only modestly elevated in serum, indicating minimal hypercalcemic risk. These results show that brief oral administration of cholecalciferol can serve as a safe neoadjuvant to ALA‐PDT. We suggest a clinical study, using oral vitamin D3 prior to PDT, should be considered to evaluate this promising new approach to treating human skin cancer.  相似文献   

4.
Gliomas are aggressive brain tumors that are resistant to conventional chemotherapy and radiotherapy. Much of this resistance is attributed to endogenous nitric oxide (NO). Recent studies revealed that 5‐aminolevulinic acid (ALA)‐based photodynamic therapy (PDT) has advantages over conventional treatments for glioblastoma. In this study, we used an in vitro model to assess whether NO from glioblastoma cells can interfere with ALA‐PDT. Human U87 and U251 cells expressed significant basal levels of neuronal NO synthase (nNOS) and its inducible counterpart (iNOS). After an ALA/light challenge, iNOS level increased three‐ to fourfold over 24 h, whereas nNOS remained unchanged. Elevated iNOS resulted in a large increase in intracellular NO. Extent of ALA/light‐induced apoptosis increased substantially when an iNOS inhibitor or NO scavenger was present, implying that iNOS/NO was acting cytoprotectively. Moreover, cells surviving a photochallenge exhibited a striking increase in proliferation, migration and invasion rates, iNOS/NO again playing a dominant role. Also observed was a large iNOS/NO‐dependent increase in matrix metalloproteinase‐9 activity, decrease in tissue inhibitor of metalloproteinase‐1 expression and increase in survivin and S100A4 expression, each effect being consistent with accelerated migration/invasion as a prelude to metastasis. Our findings suggest introduction of iNOS inhibitors as pharmacologic adjuvants for glioblastoma PDT.  相似文献   

5.
Expression of proteins related to cell surveillance has been described in tumors presenting resistance to photodynamic therapy (PDT). The aim of this study was to verify whether there was upregulation of proteins related to resistance in oral squamous cell carcinoma (OSCC) after PDT. OSCC was chemically induced in rats and treated after one cycle of PDT mediated by 5‐aminolevulinic acid (5‐ALA‐PDT). Immunolabeling of p‐NFκB, Bcl‐2, survivin, iNOS, p‐Akt, p‐mTOR and cyclin D1 was performed after the treatment. There was increased expression of Bcl‐2 (P = 0.008), iNOS (P = 0.020), p‐Akt (P = 0.020) and p‐mTOR (P = 0.010) by surviving neoplastic cells after PDT when compared to the control. In conclusion, after one cycle of 5‐ALA‐mediated PDT, Bcl‐2, p‐Akt, p‐mTOR and iNOS were upregulated in neoplastic cells of OSCC, suggesting an activation of antiapoptosis and cell proliferation pathways. This fact must be considered in the establishment of PDT protocols for OSCC treatment, mainly those in which PDT will be combined with chemotherapy drugs targeted at the studied proteins.  相似文献   

6.
Aminolevulinic acid (ALA)‐mediated protoporphyrin IX (PpIX) production is being explored for tumor fluorescence imaging and photodynamic therapy (PDT). As a prodrug, ALA is converted in heme biosynthesis pathway to PpIX with fluorescent and photosensitizing properties. To better understand the role of heme biosynthesis enzymes in ALA‐mediated PpIX fluorescence and PDT efficacy, we used lentiviral shRNA to silence the expression of porphobilinogen synthase (PBGS), porphobilinogen deaminase (PBGD) and ferrochelatase (FECH) in SkBr3 human breast cancer cells. PBGS and PBGD are the first two cytosolic enzymes involved in PpIX biosynthesis, and FECH is the enzyme responsible for converting PpIX to heme. PpIX fluorescence was examined by flow cytometry and confocal fluorescence microscopy. Cytotoxicity was assessed after ALA‐mediated PDT. Silencing PBGS or PBGD significantly reduced ALA‐stimulated PpIX fluorescence, whereas silencing FECH elevated basal and ALA‐stimulated PpIX fluorescence. However, compared with vector control cells, the ratio of ALA‐stimulated fluorescence to basal fluorescence without ALA was significantly reduced in all knockdown cell lines. PBGS or PBGD knockdown cells exhibited significant resistance to ALA‐PDT, while increased sensitivity to ALA‐PDT was found in FECH knockdown cells. These results demonstrate the importance of PBGS, PBGD and FECH in ALA‐mediated PpIX fluorescence and PDT efficacy.  相似文献   

7.
When irradiated, fullerene efficiently generates reactive oxygen species (ROS) and is an attractive photosensitizer for photodynamic therapy (PDT). Ideally, photosensitizers for PDT should be water-soluble and tumor-specific. Because cancer cells endocytose glucose more effectively than normal cells, the characteristics of fullerene as a photosensitizer were improved by combining it with glucose. The cytotoxicity of PDT was studied in several cancer cell lines cultured with C60-(Glc)1 (d -glucose residue pendant fullerene) and C60-(6Glc)1 (a maltohexaose residue pendant fullerene) subsequently irradiated with UVA1. PDT alone induced significant cytotoxicity. In contrast, PDT with the glycoconjugated fullerene exhibited no significant cytotoxicity against normal fibroblasts, indicating that PDT with these compounds targeted cancer cells. To investigate whether the effects of PDT with glycoconjugated fullerene were because of the generation of singlet oxygen (1O2), NaN3 was added to cancer cells during irradiation. NaN3 extensively blocked PDT-induced apoptosis, suggesting that PDT-induced cell death was a result of the generation of 1O2. Finally, to investigate the effect of PDT in vivo, melanoma-bearing mice were injected intratumorally with C60-(Glc)1 and irradiated with UVA1. PDT with C60-(Glc)1 suppressed tumor growth. These findings indicate that PDT with glycoconjugated fullerene exhibits tumor-specific cytotoxicity both in vivo and in vitro via the induction of 1O2.  相似文献   

8.
Efficacy of ionizing radiation (I/R) was compared with phototoxic effects of photodynamic therapy (PDT) in vitro using two cell lines derived from patients with head and neck squamous cell carcinoma (HNSCC). A cell line derived from a donor with a human papilloma virus (HPV) infection was more responsive to I/R but significantly less responsive to PDT than a cell line derived from an HPV-free patient. Cell death after I/R in the HPV(+) cell line was associated with increased DEVDase activity, a hallmark of apoptosis. The HPV(−) line was considerably less responsive to I/R, with DEVDase activity greatly reduced, suggesting an impaired apoptotic program. In contrast, the HPV(−) cells were readily killed by PDT when the ER was among the targets for photodamage. While DEVDase activity was enhanced, the death pathway appears to involve paraptosis until the degree of photodamage reached the LD99 range. These data suggest that PDT-induced paraptosis can be a death pathway for cells with an impaired apoptotic program.  相似文献   

9.
Photodynamic therapy (PDT) with lysosome-targeted photosensitizers induces the intrinsic pathway of apoptosis via the cleavage and activation of the BH3-only protein Bid by proteolytic enzymes released from photodisrupted lysosomes. To investigate the role of Bid in apoptosis induction and the role of damaged lysosomes on cell killing by lysosome-targeted PDT, we compared the responses of wild type and Bid-knock-out murine embryonic fibroblasts toward a mitochondrion/endoplasmic reticulum-binding photosensitizer, Pc 4, and a lysosome-targeted sensitizer, Pc 181. Whereas apoptosis and overall cell killing were induced equally well by Pc 4-PDT in both cell lines, Bid−/− cells were relatively resistant to induction of apoptosis and to overall killing following PDT with Pc 181, particularly at low PDT doses. Thus, Bid is critical for the induction of apoptosis caused by PDT with the lysosome-specific sensitizers, but dispensable for PDT targeted to other membranes.  相似文献   

10.
The damage induced by end products of photodynamic therapy (PDT) in astrocytoma tumors leads to cytotoxicity and cell death. Chromatin modifiers such as sodium butyrate (NaB) induce several genes involved in apoptosis, among others. The PDT improvement was evaluated by the measurement of its effectiveness in the treatment of U373-MG and D54-MG astrocytoma cell lines exposed to NaB. Cells exposed to 80 μg mL−1 of δ-aminolevulinic acid (ALA) as precursor of endogenous photosensitizer (PS), protoporphyrin IX (PpIX), induced 16.67% and 28.9% of mortality in U373-MG and D54-MG, respectively. The mortality increased to 70.62% and 96.7%, respectively, when U373-MG and D54-MG cells were exposed for 24 h to 8 m m NaB prior to ALA-induction. In this condition, re-expression of some genes related to apoptosis in U373-MG, and differentiation in D54-MG were induced. PpIX accumulation was higher than ALA-induction and the acetylation of histone H4 induced by NaB was verified by immunocytochemistry in both cells. It can be concluded that modified chromatin and genes induced by NaB increment the cellular death induced by PDT in astrocytoma cells using PpIX as endogenous PS.  相似文献   

11.
Photodynamic therapy (PDT) can treat superficial, early‐stage disease with minimal damage to underlying tissues and without cumulative dose‐limiting toxicity. Treatment efficacy is affected by disease physiologic properties, but these properties are not routinely measured. We assessed diffuse reflectance spectroscopy (DRS) for the noninvasive, contact measurement of tissue hemoglobin oxygen saturation (StO2) and total hemoglobin concentration ([tHb]) in the premalignant or superficial microinvasive oral lesions of patients treated with 5‐aminolevulinic acid (ALA)‐PDT. Patients were enrolled on a Phase 1 study of ALA‐PDT that evaluated fluences of 50, 100, 150 or 200 J cm?2 delivered at 100 mW cm?2. To test the feasibility of incorporating DRS measurements within the illumination period, studies were performed in patients who received fractionated (two‐part) illumination that included a dark interval of 90–180 s. Using DRS, tissue oxygenation at different depths within the lesion could also be assessed. DRS could be performed concurrently with contact measurements of photosensitizer levels by fluorescence spectroscopy, but a separate noncontact fluorescence spectroscopy system provided continuous assessment of photobleaching during illumination to greater tissue depths. Results establish that the integration of DRS into PDT of early‐stage oral disease is feasible, and motivates further studies to evaluate its predictive and dosimetric value.  相似文献   

12.
As an antitumor modality based on sensitizer photoexcitation by tumor-directed light, photodynamic therapy (PDT) has the advantage of being site-specific compared with conventional chemotherapy or radiotherapy. Like these other therapies, however, PDT is often limited by pre-existing or acquired resistance. One type of resistance, discovered in the author’s laboratory, involves nitric oxide (NO) generated by inducible nitric oxide synthase (iNOS) in tumor cells. Using human breast, prostate and brain cancer cell lines, we have shown that iNOS is dramatically upregulated after a moderate PDT challenge sensitized by 5-aminolevulinic acid-induced protoporphyrin IX. The elevated NO not only elicited a greater resistance to cell photokilling, but also an increase in the growth and migration/invasion rate of surviving cells. Greater iNOS/NO-based resistance was also demonstrated at the in vivo level using a breast tumor xenograft model. More recent studies have shown that NO from PDT-targeted cells can stimulate a progrowth/promigration response in non-targeted bystander cells. These novel effects of NO, their negative impact on PDT efficacy and possible mitigation thereof by anti-iNOS/NO pharmacologic agents will be discussed.  相似文献   

13.
Abstract— Photodynamic therapy (PDT) is an efficient inducer of apoptosis, an active form of cell death that can be inhibited by the BCL-2 oncoprotein. The ability of BCL-2 to modulate PDT-induced apoptosis and overall cell killing has been studied in a pair of Chinese hamster ovary cell lines that differ from one another by a transfected human BCL-2 gene in one of them (Bissonnette et al., Nature 359,552–554, 1992). Cells were exposed to the phthalo-cyanine photosensitizer Pc 4 and various fluences of red light. Pc 4 uptake was identical in the two cell lines. The parental cells displayed a high incidence of apoptosis after PDT, whereas at each fluence there was a much lower incidence of apoptosis in the BCL-2-expressing cells. Apoptosis was monitored by (a) observation of 50 kbp and oligonucleosome-size DNA fragments by gel electrophoresis, (b) flow cytometry of cells labeled with fluores-cently tagged dUTP by terminal deoxynucleotidyl transferase and (c) fluorescence microscopy of acridine orange-stained cells. The time course of apoptosis varied with the PDT dose, suggesting that only after moderately high doses (> 99% loss of clonogenicity) was there a relatively synchronous and rapid entry of many cells into apoptosis. At PDT doses reducing cell survival by 90 or 99%, significant increases in apoptotic cells were found in the population after6–12 h. Clonogenic assays showed that BCL-2 protein inhibited not only apoptosis but overall cell killing as well, effecting a two-fold resistance at the 10% survival level. Thus, BCL-2 -expressing cells may be relatively resistant to PDT.  相似文献   

14.
The aim of this study was to elucidate photodynamic therapy (PDT) effects mediated by hypericin and a liposomal meso‐tetrahydroxyphenyl chlorin (mTHPC) derivative, with focus on their 1:1 mixture, on head and neck squamous cell carcinoma cell lines. Absorption, excitation and photobleaching were monitored using fluorescence spectrometry, showing the same spectral patterns for the mixture as measured for single photosensitizers. In the mixture mTHPC showed a prolonged photo‐stability. Singlet oxygen yield for light‐activated mTHPC was ΦΔ = 0.66, for hypericin ΦΔ = 0.25 and for the mixture ΦΔ = ~0.4. A linear increase of singlet oxygen yield for mTHPC and the mixture was found, whereas hypericin achieved saturation after 35 min. Reactive oxygen species fluorescence was only visible after hypericin and mixture‐induced PDT. Cell viability was also more affected with these two treatment options under the selected conditions. Examination of death pathways showed that hypericin‐mediated cell death was apoptotic, with mTHPC necrotic and the 1:1 mixture showed features of both. Changes in gene expression after PDT indicated strong up‐regulation of selected heat‐shock proteins. The application of photosensitizer mixtures with the features of reduced dark toxicity and combined apoptotic and necrotic cell death may be beneficial in clinical PDT. This will be the focus of our future investigations.  相似文献   

15.
This study aimed to determine the effectiveness of photodynamic therapy (PDT), using δ‐aminolevulinic acid (5‐ALA), in the elimination of premalignant cervical lesions in Mexican patients with human papillomavirus (HPV) infection and/or cervical intraepithelial neoplasia (CIN). Thirty women diagnosed with CIN I and/or positive for HPV participated in the study. Topical 6% 5‐ALA in gel form was applied to the uterine cervix; after 4 h, the lesion area was irradiated with a light dose of 200 J cm?2 at 635 nm. This procedure was performed three times at 48‐h intervals. Clinical follow‐up was performed at 3, 6, and 12 months after the initial PDT administration, by colposcopy, cervical cytology, histopathological analysis, polymerase chain reaction, and hybrid capture. Of HPV‐infected patients without evidence of CIN I, 80% cleared the infection, while HPV associated with CIN I was eliminated in 83% of patients (P < 0.05). At 12 months, CIN I had regressed in 57% of patients, although this response was not statistically significant. PDT using 6% 5‐ALA is concluded to be effective in eliminating HPV infection associated or not with CIN I.  相似文献   

16.
Photodynamic therapy (PDT) is based on the cytotoxicity of photosensitizers in the presence of light. Increased selectivity and effectivity of the treatment is expected if a specific uptake of the photosensitizers into the target cells, often tumor cells, can be achieved. An attractive transporter for that purpose is the folic acid receptor α (FRα), which is overexpressed on the surface of many tumor cells and mediates an endocytotic uptake. Here, we describe the synthesis and photobiological characterization of polar β‐carboline derivatives as photosensitizers covalently linked to folate‐tagged albumin as the carrier system. The particles were taken up by KB (human carcinoma) cells within <90 min and then co‐localized with a lysosomal marker. FRα antibodies prevented the uptake and also the corresponding conjugate without folate was not taken up. Accordingly, a folate‐albumin‐β‐carbolinium conjugate proved to be phototoxic, while the corresponding albumin–β‐carbolinium conjugates without FA were nontoxic, both with and without irradiation. An excess of free folate as competitor for the FRα‐mediated uptake completely inhibited the photocytotoxicity. Interestingly, the albumin conjugates are devoid of photodynamic activity under cell‐free conditions, as shown for DNA as a target. Thus, phototoxicity requires cellular uptake and lysosomal degradation of the conjugates. In conclusion, albumin–folate conjugates appear to be promising vehicles for a tumor cell targeted PDT.  相似文献   

17.
A technique is introduced that monitors the depletion of intracellular ground state oxygen concentration ([3O2]) during photodynamic therapy of Mat‐LyLu cell monolayers and cell suspensions. The photosensitizer Pd(II) meso‐tetra(4‐carboxyphenyl)porphine (PdT790) is used to manipulate and indicate intracellular [3O2] in both of the in vitro models. The Stern–Volmer relationship for PdT790 phosphorescence was characterized in suspensions by flowing nitrogen over the suspension while short pulses of 405 nm light were used to excite the sensitizer. The bleaching of sensitizer and the oxygen consumption rate were also measured during continuous exposure of the cell suspension to the 405 nm laser. Photodynamic therapy (PDT) was conducted in both cell suspensions and in cell monolayers under different treatment conditions while the phosphorescence signal was acquired. The intracellular [3O2] during PDT was calculated by using the measured Stern–Volmer relationship and correcting for sensitizer photobleaching. In addition, the amount of oxygen that was consumed during the treatments was calculated. It was found that even at large oxygen consumption rates, cells remain well oxygenated during PDT of cell suspensions. For monolayer treatments, it was found that intracellular [3O2] is rapidly depleted over the course of PDT.  相似文献   

18.
Intersystem crossing (ISC) of triplet photosensitizers is a vital process for fundamental photochemistry and photodynamic therapy (PDT). Herein, we report the co‐existence of efficient ISC and long triplet excited lifetime in a heavy atom‐free bodipy helicene molecule. Via theoretical computation and time‐resolved EPR spectroscopy, we confirmed that the ISC of the bodipy results from its twisted molecular structure and reduced symmetry. The twisted bodipy shows intense long wavelength absorption (?=1.76×105 m ?1 cm?1 at 630 nm), satisfactory triplet quantum yield (ΦT=52 %), and long‐lived triplet state (τT=492 μs), leading to unprecedented performance as a triplet photosensitizer for PDT. Moreover, nanoparticles constructed with such helical bodipy show efficient PDT‐mediated antitumor immunity amplification with an ultra‐low dose (0.25 μg kg?1), which is several hundred times lower than that of the existing PDT reagents.  相似文献   

19.
Enterococcus faecalis poses a challenge to the efficacy of traditional root canal disinfection methods. This study was aimed to establish a synergistic root canal disinfection strategy combining ultrasonic irrigation with photodynamic therapy (PDT) together and to test its antibacterial efficacy against E. faecalis. Twenty‐seven bovine root canals infected with E. faecalis were randomly divided into three groups and treated with different disinfection methods as follows: ultrasonic irrigation with 2.5% NaOCl, methylene blue (MB)‐mediated PDT, or combined ultrasonic irrigation and PDT as described above. Quantification of E. faecalis was performed on the root canals before and immediately after the disinfection treatment. Residual bacteria were determined by counting colony‐forming units. Samples were randomly selected from the three groups, and the morphology of residual bacteria inside the dentinal tubules was studied by scanning electron microscopy. The number of surviving E. faecalis in the group treated with the combination method was significantly lower (P < 0.05) than those in the ultrasonic irrigation‐treated or PDT‐treated groups. Similar results were found in the morphological studies of the three groups. The results of our study highlighted the importance of combination of ultrasonic irrigation and PDT to produce significant antibacterial efficacy against E. faecalis during root canal disinfection.  相似文献   

20.
Rapid Initiation of Apoptosis by Photodynamic Therapy   总被引:6,自引:1,他引:6  
Abstract— Photodynamic therapy (PDT) of neoplastic cell lines is sometimes associated with the rapid initiation of apoptosis, a mode of cell death that results in a distinct pattern of cellular and DNA fragmentation. The apoptotic response appears to be a function of both the sensitizer and the cell line. In this study, we examined photodynamic effects of several photosensitizers on murine leukemia P388 cells. Two drugs, a porphycene dimer (PcD) and tin etiopurpurin (SnET2), which localized at lysosomal sites, were tested at PDT doses that resulted in 50% loss of viability (LD50), measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. An oligonucleosomal pattern of DNA degradation was observed within 1 h after irradiation. Neither sensitizer antagonized PDT-mediated internucleosomal DNA cleavage by the other. Very high PDT doses with either agent abolished this rapid internucleosomal cleavage. Exposure of cells to high concentrations of either sensitizer in the dark also resulted in rapid DNA fragmentation to nucle-osomes and nucleosome multimers; this effect was not altered by the antioxidant 6-hydroxy-2,5,7,8-tetramethyl-chroman-2-carboxylic acid (trolox), although the latter could protect cells from cytotoxicity and apoptotic effects caused by LD50 PDT doses. Photodamage from two cat-ionic sensitizers, which localized at membrane sites, caused rapid DNA cleavage to 50 kb particles; however, no further fragmentation was detected after 1 h under LD10, LD50 or LD95 PDT conditions. Moreover, the presence of either cationic sensitizer inhibited the rapid internucleosomal cleavage induced by SnET2 or PcD photodamage. The site of photodynamic action may therefore be a major determinant of the initiation and rate of progression of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号