首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gas exchange techniques were employed to study responses of stomatal conductance to pulses of red and blue light in the grass, Zea mays. Zea mays exhibited conductance increases following brief (< 1 min) pulses of either red or blue light, in contrast to other species (e.g. Commelina communis; Assmann, 1988, Plant Physiol. 87 , 226–231) that exhibit consistent conductance responses only to pulses of blue light. Red light pulses of 450 μmol m?2s?1 for x min or 225 μmol m?2s?1 for 2x min were used to probe the fluence dependence of the red light response. The red light-stimulated conductance increase was constant for a given fluence, and increased with increasing total fluence. The conductance response to red light was larger in field grown plants (maximum growth irradiance ? 1600 μmol m-2s?l) than in plants raised in growth chambers (maximum growth irradiance ? 150 μmol m?2s?1).  相似文献   

2.
This study investigates the effects of different light qualities on the photosynthetic capacity of the brown algae Fucus vesiculosus, from the Norwegian Sea, and Fucus radicans and F. vesiculosus, from the Bothnian Sea. The electron transport rates (ETR) obtained for F. vesiculosus from the Norwegian Sea showed significantly higher levels of light saturation compared with both species of algae from the Bothnian Sea. The maximum of ETR values for the Norwegian Sea strain showed no significant changes due to varying light quality compared with the initial values. For F. vesiculosus, from the Bothnian Sea, treatment with blue light showed an effect after 1 week of 30 and 90 μmol photons m?2 s?1 (P < 0.01), and for F. radicans from the Bothnian Sea, at the irradiance of 90 μmol photons m?2 s?1 and 1 week (P < 0.01). After 1 week in the Bothnian Sea species and after 2 weeks in F. vesiculosus from the Norwegian Sea, the photosynthetic efficiency (α) was significantly higher regardless of light quality and irradiance compared with the initial values. Variation in light quality and irradiance had minor effects on the Fv:Fm values of the three algal strains studied.  相似文献   

3.
The purpose of this work was to purify a protease from Penicillium waksmanii and to determine its biochemical characteristics and specificity. The extracellular protease isolated that was produced by P. waksmanii is a serine protease that is essential for the reproduction and growth of the fungus. The protease isolated showed 32 kDa, and has optimal activity at pH 8.0 and 35 °C towards the substrate Abz-KLRSSKQ-EDDnp. The protease is active in the presence of CaCl2, KCl, and BaCl, and partially inhibited by CuCl2, CoCl2 and totally inhibited by AlCl3 and LiCl. In the presence of 1 M urea, the protease remains 50 % active. The activity of the protease increases 60 % when it is exposed to 0.4 % nonionic surfactant-Triton X-100 and loses 10 % activity in the presence of 0.4 % Tween-80. Using fluorescence resonance energy transfer analysis, the protease showed the most specificity for the peptide Abz-KIRSSKQ-EDDnp with k cat/K m of 10,666 mM?1?s?1, followed by the peptide Abz-GLRSSKQ-EDDnp with a k cat/K m of 7,500 mM?1?s?1. Basic and acidic side chain-containing amino acids performed best at subsite S1. Subsites S2, S3, S 2, and S 1, S 3 showed a preference for binding for amino acids with hydrophobic and basic amino acid side chain, respectively. High values of k cat/K m were observed for the subsites S2, S3, and S 2. The sequence of the N-terminus (ANVVQSNVPSWGLARLSSKKTGTTDYTYD) showed high similarity to the fungi Penicillium citrinum and Penicillium chrysogenum, with 89 % of identity at the amino acid level.  相似文献   

4.
The photoreceptors involved in the photosynthetic acclimation of tomato (Lycopersicon esculentum Mill.) to increased irradiance were investigated. Plants were transferred from 100 p.mol m?2 s?1 cool white fluorescent light to higher irradiances of white light or white light supplemented with blue, red, green or yellow light. In these experiements light of all wavelengths tested was capable of causing acclimation as measured by the rate of light-saturated photosynthesis. It was concluded that the photosynthetic system rather than the blue-absorbing photoreceptor or phytochrome system acts as the photoreceptor for increased irradiance. No acclimation was observed in response to increased CO2 levels, but increasing light integral at a constant irradiance was effective in bringing about acclimation. We conclude that acclimation is a response to increased photosynthetic light capture rather than increased photosynthetic carbon fixation, and involves a photon counting mechanism.  相似文献   

5.
An extracellular, endo-??-1,4-xylanase was purified to homogeneity from the culture filtrate of the filamentous fungus Penicillium occitanis Pol6, grown on oat spelt xylan. The purified enzyme (PoXyn2) showed a single band on SDS?CPAGE with an apparent molecular weight of 30?kDa. The xylanase activity was optimal at pH?3.0 and 65?°C. The specific activity measured for oat spelt xylan was 2,368?U?mg?1. The apparent K m and V max values were 8.33?mg?ml?1 and 58.82???mol?min?1?ml?1, respectively, as measured on oat spelt xylan. Thin-layer chromatography experiments revealed that purified PoXyn2 degrades xylan in an endo-fashion releasing xylobiose as main end product. The genomic DNA and cDNA encoding this protein were cloned and sequenced. This PoXyn2 presents an open reading frame of 962?bp, not interrupted by any introns and encoding for a mature protein of 320 amino acids and 29.88?kDa.  相似文献   

6.
Grape berry development and ripening depends mainly on imported photosynthates from leaves, however, fruit photosynthesis may also contribute to the carbon economy of the fruit. In this study pulse amplitude modulated chlorophyll fluorescence imaging (imaging‐PAM) was used to assess photosynthetic properties of tissues of green grape berries. In particular, the effect of the saturation pulse (SP) intensity was investigated. A clear tissue‐specific distribution pattern of photosynthetic competence was observed. The exocarp revealed the highest photosynthetic capacity and the lowest susceptibility to photoinhibition, and the mesocarp exhibited very low fluorescence signals and photochemical competence. Remarkably, the seed outer integument revealed a photosynthetic ability similar to that of the exocarp. At a SP intensity of 5000 μmol m?2 s?1 several photochemical parameters were decreased, including maximum fluorescence in dark‐adapted (Fm) and light‐adapted (F'm) samples and effective quantum yield of PSII (ΦII), but the inner tissues were susceptible to a SP intensity as low as 3200 μmol m?2 s?1 under light‐adapted conditions, indicating a photoinhibitory interaction between SP and actinic light intensities and repetitive exposure to SP. These results open the way to further studies concerning the involvement of tissue‐specific photosynthesis in the highly compartmentalized production and accumulation of organic compounds during grape berry development.  相似文献   

7.
A series of Ni(II), Pd(II) and Cu(II) metal complexes of highly functionalized aroylaminocarbo-N-thioyl pyrrolidines were prepared and characterized by microanalysis, spectroscopic methods, magnetic susceptibility measurements and single crystal X-ray diffraction studies. The antifungal activity of the metal complexes against the yeast Saccharomyces cerevisae and against the fungus Penicillium digitatum was studied.  相似文献   

8.
One new benzopyran derivative (2R*,4R*)-3,4-dihydro-5-methoxy-2-methyl-2H-1-benzopyran-4-ol (1), together with five known compounds (2?6), were obtained from the EtOAc extract of the endophytic fungus Penicillium citrinum HL-5126 isolated from the mangrove Brguiera sexangula var. rhynchopetala collected in the South China Sea. Their structures were elucidated by the detailed analysis of comprehensive spectroscopic data. All compounds were evaluated for their antibacterial activities. Compound 6 exhibited potent inhibitory activity against Bacillus subtilis, Bacillus cereus and Micrococcus tetragenus with the same MIC values of 6.94 μM.  相似文献   

9.
Abstract— The partitioning of plant growth between shoot and root has the potential to affect diverse physiological processes including water and nutrient uptake, nitrogen fixation, light interception, and interactions between plant and soil microorganisms. Root: shoot ratio is determined both by genetics and developmental status as well as by availability of water, nutrients and light. It is shown here that relative root growth was modulated by photomorphogenetic treatments designed to affect phytochrome (supplemental far-red radiation given either as an end-of-day treatment or continuously during the photoperiod) or blue light photoreceptors (blue light-deficient low pressure sodium lamps ± low irradiances of supplemental blue [i.e. 5% of total photon flux: 25 μ.mol m?2 s?1]). Photomorphogenetic control of root: shoot ratio was apparent within1–2 days when light treatments were initiated at emergence, and did not necessarily involve changes in net seedling growth. On the other hand, shortened daylength inhibited early seedling growth but had little effect on partitioning. Changes in relative root dry matter induced by supplemental far red radiation or blue light deficiency were similar to those caused by low irradiances, suggesting that phytochrome or blue light photoreceptors may be involved in regulating the partitioning of growth between shoot and root as a part of adaptation to vegetation shade. The influence of spectral quality on root: shoot ratio should be considered when comparing plants grown under different types of lighting or with different spacing.  相似文献   

10.
Abstract— Intact leaves of Commelina communis irradiated with high fluence rates of red light, showed discrete increases in stomatal conductance in response to pulses (1-100 s) of blue light (250 μmol m?2 s?1). Red light pulses were ineffective, indicating that the conductance increases were not mediated by photosynthesis and that they constitute a specific stomatal response to blue light. The response peaked 15 min after the pulse and was completed within50–60 min. Conductance increases were proportional to pulse duration up to about 30 s and saturated at longer exposures. The relationship between stomatal responses and pulse duration approximately fitted an exponential function, with a t 9s. Pulse responses at two different fluences indicated that reciprocity held. Responses to two consecutive pulses varied with time between pulses. A saturating pulse applied immediately after a preceding one induced no additional response; two saturating pulses 50 min apart caused two identical, consecutive responses. Total increases in conductance induced by two pulses separated by intermediate time intervals increased with time between pulses with a = 9 min. These results point to a blue light-dependent photoconversion of a molecular form, with the activity of the photoconversion product decaying in a thermal reaction. Under continuous blue light, prevailing fluence rates and rates of the light and thermal reactions are postulated to determine steady-state activities of the photoconversion product and proportional increases in conductance levels. These findings have implications for the environmental and metabolic roles of the stomatal response to blue light.  相似文献   

11.
Abstract— In this research, we measured the short- and long-term, stem elongation responses of wild-type and aurea(au) mutant tomato plants to different photosynthetically active radiation (PAR) levels by using linear voltage transducers. Stem elongation was continuously measured in green tomato plants over 2.75 days, under 12 h light/12 h dark photoperiods or in darkness after a 6 h irradiation period. There is no significant difference in stem elongation between wild-type plants pregrown at either LOO or 400 μmol m?2 s?1 and then exposed to 12 h photoperiods. However, in the au mutant there is a very large difference between plants pregrown under 100 or 400 umol m ?2 s?1 and then exposed either to 12 h photoperiods or to continuous darkness. Total stem elongation of the wild type appears to be maximal at 100 umol m?2 s?1, while that of the au mutant appears to be maximal with PAR 400 umol m?2 s?1. Wild-type plants displayed PAR-dependent (in the range 100-800 umol m?2 s?1) inhibition of growth both during the day and during the night. In contrast, the au mutant showed a fluence-rate-dependent promotion of growth during the dark periods in the range of 10-400 umol m?2 s?1. Large, fast and opposite changes in stem elongation rate at the light/dark and dark/light transitions were present in both genotypes. Internode elongation rate in the first half of the night was always modest in wild-type tomato, whereas it increased rapidly in the au mutant. Stem elongation rate of wild type starts to increase after about 6 h in darkness, showing the typical time course of escape from Pfr-mediated inhibition of elongation by an end-of-day response. The role of phytochrome level and type in sensing light quantity is discussed.  相似文献   

12.
Light has bilateral effects on phototrophic organisms. As cyanobacteria in Roman hypogea are long acclimatized to dim environment, moderate intensity of illumination can be used to alleviate biodeterioration problems on the stone substrata. Moderate intensity of light inactivates cyanobacteria by causing photoinhibition, photobleaching and photodamage to the cells. The effectiveness of light depends not only on its intensity but also on the composition and pigmentation of the component cyanobacteria in the biofilms. Red light is the most effective for the species rich in phycocyanin and allophycocyanin, such as Leptolyngbya sp. and Scytonema julianum, whereas green light is effective to inhibit the species rich in phycoerythrin, like Oculatella subterranea. White light is effective to control the grayish and the black cyanobacteria, such as Symphyonemopsis sp. and Eucapsis sp. abundant in all of these pigments. Blue light is the least effective. 150 μmol photons m?2 s?1 of blue light cannot cause biofilm damage while the same intensity of red, green or white irradiation for 14 days can severely damage the cyanobacterial cells in the biofilms due to ROS formation. Electron spin resonance spectroscopy detected the formation of radicals in different cyanobacterial cellular extracts exposed to 80 μmol photons m?2 s?1 of light.  相似文献   

13.
Abstract— In Chlorella saccharophila blue light supplementary to red light stimulated the nitrate uptake rate by a factor of two. This stimulation was independent of photosynthesis as it occurred in cells where photosynthesis was totally inhibited by DCMU. The effect of blue light (2 min 25 μE m ?2 s?1 are sufficient) led to an event that persisted for 50 min (memory effect) as an enhanced nitrate uptake. However, the addition of ocadaic acid extended the effect of blue light over 90 min. Blue light alone also led to the phosphorylation of distinct proteins (120 kDa and 34 kDa) bound to the plasma membrane with that at 34 kDa being the most prominent. This phosphorylation was inhibited by staurosporine and was stimulated after the plasma membrane vesicles were treated with several freeze-thawing cycles.  相似文献   

14.
This research studied the effectiveness of the photoactive compound methylene blue (MB) activated with red LED light (576–672 nm) compared to that of caspofungin (CAS) on 1 Candida albicans and 3 Candida parapsilosis strains. Results were evaluated in terms of SMIC50 for CAS or in PDI (photodynamic inactivation)‐SMIC50 for MB (minimal inhibitory concentration inhibiting sessile biofilm to 50% in comparison to the control without CAS or after irradiation in comparison to the control without MB). While all strains were susceptible to CAS in planktonic form, the SMIC50 was determined to be >16 μg mL?1 when CAS was added to a 24 h biofilm. However, PDI‐MIC50s (1.67 mW cm?2, fluence 15 J cm?2) were 0.0075–0.03 mmol L?1. For biofilm, PDI‐SMIC50s were in the range from 0.7 to 1.35 mmol L?1. MB concentration of 1 mmol L?1 prevented a biofilm being formed ex vivo on mouse tongues after irradiation regardless of the application time, in contrast to CAS, which was only effective at a concentration of 16 μg mL?1 when it was added at the beginning of biofilm formation. PDI seems to be a promising method for the prevention of microbial biofilms that do not respond significantly to conventional drugs.  相似文献   

15.
The gas-phase elimination of several polar substituents at the α carbon of ethyl acetates has been studied in a static system over the temperature range of 310–410°C and the pressure range of 39–313 torr. These reactions are homogeneous in both clean and seasoned vessels, follow a first-order rate law, and are unimolecular. The temperature dependence of the rate coefficients is given by the following Arrhenius equations: 2-acetoxypropionitrile, log k1 (s?1) = (12.88 ± 0.29) – (203.3 ± 2.6) kJ/mol (2.303RT)?1; for 3-acetoxy-2-butanone, log ±1(s?1) = (13.40 ± 0.20) – (202.8 ± 2.4) kJ/mol (2.303RT)?1; for 1,1,1-trichloro-2-acetoxypropane, log ?1 (s?1) = (12.12 ± 0.50) – (193.7 ± 6.0) kJ/mol (2.303RT)?; for methyl 2-acetoxypropionate, log ?1 (s?1) = (13.45 ± 0.05) – (209.5 ± 0.5) kJ/mol (2.303RT)?1; for 1-chloro-2-acetoxypropane, log ?1 (s?1) = (12.95 ± 0.15) – (197.5 ± 1.8) kJ/mol (2.303RT)?1; for 1-fluoro-2-acetoxypropane, log ?1 (s?1) = (12.83 ± 0.15)– (197.8 ± 1.8) kJ/mol (2.303RT)?1; for 1-dimethylamino-2-acetoxypropane, log ?1 (s?1) = (12.66 ± 0.22) –(185.9 ± 2.5) kJ/mol (2.303RT)?1; for 1-phenyl-2-acetoxypropane, log ?1 (s?1) = (12.53 ± 0.20) – (180.1 ± 2.3) kJ/mol (2.303RT)?1; and for 1-phenyl?3?acetoxybutane, log ?1 (s?1) = (12.33 ± 0.25) – (179.8 ± 2.9) kJ/mol (2.303RT)?1. The Cα? O bond polarization appears to be the rate-determining process in the transmition state of these pyrolysis reactions. Linear correlations of electron-releasing and electron-withdrawing groups along strong σ bonds have been projected and discussed. The present work may provide a general view on the effect of alkyl and polar substituents at the Cα? O bond in the gas-phase elimination of secondary acetates.  相似文献   

16.
We established a cell line (HEK‐hMel) expressing melanopsin in a tetracycline dependent manner to elucidate new aspects of melanopsin's light response. Different light stimuli were evaluated using FOS expression as response parameter. Immunoblotting was used to evaluate expression of melanopsin and FOS and qPCR to quantify FOS mRNA responses. The magnitude of the FOS response was found to correlate with the amount of melanopsin expressed by the cells, and a transient FOS mRNA induction followed by FOS protein still elevated after 24 h of illumination was revealed. Exposing the cells to darkness after light resulted in reduction of the response compared to exposure to light solely showing dependency on continuous light. Increasing irradiances of blue light (480 nm) up to 1011 quanta cm?2 s?1 elicited steep increases in FOS mRNA, while increases between 1012 and 5 × 1013 quanta  cm?2 s?1 resulted in equally high FOS expression. The HEK‐hMel cells were used to characterize facets of melanopsin's light‐induced FOS response not approachable in vivo. Novel information such as dependency of the FOS response on both melanopsin amount and light intensity in addition to a detailed time‐course of both FOS mRNA and protein were revealed.  相似文献   

17.
Abstract

Chemical epigenetic manipulation was applied to explore secondary metabolite of an endophytic fungus Penicillium herquei, which was obtained from the fruiting body of Cordyceps sinensis, and three previously undescribed polyketides with pyran-2-one scaffold were isolated from its fermentation broth containing 10?mg/L 5-aza-2-deoxycytidine (a frequently-used DNA methyltransferase inhibitor). The structures of these new compounds were identified by extensive spectroscopic analyses, and their absolute configurations were elucidated by quantum chemical ECD calculations.  相似文献   

18.
Macroalgae play a crucial role in coastal marine ecosystems, but they are also subject to multiple challenges due to tidal and seasonal alterations. In this work, we investigated the photosynthetic response of Pyropia yezoensis to ultraviolet radiation (PAR: 400–700 nm; PAB: 280–700 nm) under changing temperatures (5, 10 and 15°C) and light intensities (200, 500 and 800 μmol photons m?2 s?1). Under low light intensity (200 μmol photons m?2 s?1), P. yezoensis showed the lowest sensitivity to ultraviolet radiation, regardless of temperature. However, higher temperatures inhibited the repair rates (r) and damage rates (k) of photosystem II (PSII) in P. yezoensis. However, under higher light intensities (500 and 800 μmol photons m?2 s?1), P. yezoensis showed higher sensitivity to UV radiation. Both r and the ratio of repair rate to damage rate (r:k) were significantly inhibited in P. yezoensis by PAB, regardless of temperature. In addition, higher temperatures significantly decreased the relative UV‐inhibition rates, while an increased carbon fixation rate was found. Our study suggested that higher light intensities enhanced the sensitivity to UV radiation, while higher temperatures could relieve the stress caused by high light intensity and UV radiation.  相似文献   

19.
Donor–π–acceptor type fluorene‐based copolymers with a sulfone unit were designed and synthesized for application in efficient pure‐blue light emitting. The electroluminescence behaviors of these copolymers were investigated by fabricating light‐emitting diodes and electrochemical cell devices. The former device little functioned but the latter worked well. The electrochemical cell devices having a configuration of ITO/PEDOT:PSS/copolymer:ionic liquid/Al exhibited purplish blue electroluminescence with an emission maximum at 434 nm (CIE coordinates (x, y) = (0.17, 0.10)) measured at 7 V. The initial positive scan of the D–π–A polysulfone based light emitting electrochemical cell with a sweep rate of 0.1 V s?1 afforded a maximum luminance of 1080 cd m?2 with a current efficiency of 1.96 cd A?1 at an operating voltage of 12.5 V. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3454–3461  相似文献   

20.
Blue diode‐based pulse amplitude modulation (PAM) technology can be used to measure the photosynthetic electron transport rate (ETR) in a purple nonsulfur anoxygenic photobacterium, Afifella (Rhodopseudomonas) marina. Rhodopseudomonads have a reaction center light harvesting antenna complex containing an RC‐2 type bacteriochlorophyll a protein (BChl a RC‐2‐LH1) which has a blue absorption peak and variable fluorescence similar to PSII. Absorptance of cells filtered onto glass fiber disks was measured using a blue–diode‐based absorptance meter (Blue‐RAT) so that absolute ETR could be calculated from PAM experiments. Maximum quantum yield (Y) was ≈0.6, decreasing exponentially as irradiance increased. ETR vs irradiance (P vs E) curves fitted the waiting‐in‐line model (ETR = (ETRmax × E/Eopt) × exp(1 ? E/Eopt)). Maximum ETR (ETRmax) was ≈1000–2000 μmol e? mg?1 BChl a h?1. Fe2+, bisulfite and thiosulfate act as photosynthetic electron donors. Optimum irradiance was ≈100 μmol m?2 s?1 PPFD even in Afifella grown in sunlight. Quantum efficiencies (α) were ≈0.3–0.4 mol e? mol hλ?1; or ≈11.8 ± 2.9 mol e? mol hλ?1 m2 μg?1 BChl a). An underlying layer of Afifella in a constructed algal/photosynthetic bacterial mat has little effect on the measured ETR of the overlying oxyphotoautotroph (Chlorella).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号