首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The FT IR and FT Raman spectra of Co(en)3Al3P4O16.3H2O (compound I) and [NH4]3[Co(NH3)6]3[Al2 (PO4)4]2.2H2O (compound II) are recorded and analysed based on the vibrations of Co(en)(3)3+, Co(NH3)(6)3+, NH4, Al-O-P, PO3, PO2 and H2O. The observed splitting of bands indicate that the site symmetry and correlation field effects are appreciable in both the compounds. In compound I, the overtone of CH2 deformation Fermi resonates with its symmetric stretching vibration. The NH4 ion in compound II is not free to rotate in the crystalline lattice. Hydrogen bonding of different groups is also discussed.  相似文献   

2.
Hydrothermal reactions of Na3VO4, an appropriate Cu(II) source, bisterpy and an organodiphosphonate, H2O3P(CH2)nPO3H2 (n = 1-6) yielded a family of materials of the type [Cu2(bisterpy)]4+/VxOy(n-)/[O3P(CH2)nPO3]4-. This family of bimetallic oxides is characterized by an unusual structural diversity. The oxides [[Cu2(bisterpy)]V2O4[O3PCH2PO3H]2] (1), [[Cu2(bisterpy)(H2O)]VO2[O3P(CH2)3PO3][HO3P(CH2)3PO3H2]] (4) and [[Cu2(bisterpy)]V2O4[O3P(CH2)6PO3H]2].2H2O (7.2H2O) are one-dimensional, while [[Cu2(bisterpy)(H2O)2]V2O4[O3P(CH2)2PO3][HO3P(CH2)2PO3H]2] (2), [[Cu2(bisterpy)]V4O8[O3P(CH23PO3]2].4H2O (3.4H2O) and [[Cu2(bisterpy)]V2O4(OH)2[O3P(CH2)4PO3]].4H2O (5.4H2O) are two-dimensional. The V(IV) oxide [[Cu2(bisterpy)]V4O4[O3P(CH2)5PO3H]4].7.3H2O (6.7.3H2O) provides a relatively unusual example of a three-dimensional bimetallic oxide phosphonate. The structures reveal a variety of V/P/O substructures as building blocks.  相似文献   

3.
通过水热合成得到一个新的有机二膦酸亚铁化合物[NH3(CH2)5NH3][Fe2Ⅱ(O3PC(CH3)(OH)(PO3H)}2]·2H2O,该化合物包含阴离子型共价双链[Fe2Ⅱ{O3PC(CH3)(OH)PO3H}2]n2n-,质子化的戊二胺和结晶水,双链之间通过强氢键构成一个开放型的骨架结构.另外,观察到亚铁离子之间存在弱铁磁性相互作用.  相似文献   

4.
Two framework scandium methylphosphonates have been prepared hydrothermally and their structures solved. ScF(H(2)O)CH(3)PO(3) is a non-porous solid built up from -ScF- chains linked by methylphosphonate groups. The ScO(4)F(2) octahedra are completed by a coordinated water molecule. NaSc(CH(3)PO(3))(2).0.5H(2)O was solved ab initio from high-resolution synchrotron X-ray powder diffraction data. It has a fully connected, negatively charged scandium phosphonate framework where ScO(6) octahedra share vertices with PO(3)CH(3) groups. The solid contains charge balancing sodium cations, coordinated by a water molecule, which may be reversibly removed and adsorbed. The structure of the perdeuterated, dehydrated solid has been refined against neutron powder diffraction data collected at 2.5 K, showing the CD(3) groups in a fully staggered orientation with respect to the phosphonate oxygen atoms.  相似文献   

5.
The use of a moderately hydrophobic ionic liquid, 1-butyl-2,3-dimethylimidazolium tetrafluoroborate ([BdMIM][BF(4)]), as a cosolvent with water, has been investigated in the synthesis of metal phosphonates. This hydro-ionothermal synthesis has been carried out through a systematic combinatorial investigation of several divalent metal chlorides and two related ligands, iminobis(methylphosphonic acid) and N-methyliminiobis(methylphosphonic acid). These reactions resulted in five new divalent metal phosphonates. We present here the synthetic techniques utilized as well as the X-ray structures and characteristic properties of each of these compounds. Co(HO(3)PCH(2)NH(2)CH(2)PO(3)H)(2), (1), consists of sheets that are hydrogen bonded together by pairs of P-O···H groups. Co(H(2)O)(2)(HO(3)PCH(2)NH(2)CH(2)PO(3)H)(2), (2), consists of chains that are connected through an extensive network of hydrogen bonds. Co(HO(3)PCH(2)NH(CH(3))CH(2)PO(3)H)(2), (3), is made up of sheets that are hydrogen bonded together by pairing P-O···H interactions. Zn(3)(O(3)PCH(2)NH(2)CH(2)PO(3))(2), (4), is isostructural to a previously reported cobalt compound which is a non-porous 3-dimensional network. CuClPO(3)CH(2)NH(2)CH(3), (5), formed as a result of an in situ N-C bond cleavage. Ladders built of Cu-O-P-O 8-membered rings are crosslinked by bridging chloride atoms to form sheets. 1, 3, 4 and 5 have been synthesized using the hydrophobic ionic liquid 1-butyl-2,3-dimethylimidazolium tetrafluoroborate ([BdMIM][BF(4)]) with water as a cosolvent, while 2 has been synthesized from identical conditions in the absence of the [BdMIM][BF(4)]. We also report the microwave assisted hydro-ionothermal synthesis of the known polymorph of 2, Co(H(2)O)(2)(HO(3)PCH(2)NH(2)CH(2)PO(3)H)(2), (6), synthesized in two hours providing high quality crystals in good yield. The compounds have been characterized by thermogravimetric analysis and IR spectroscopy, and their magnetic properties have been investigated.  相似文献   

6.
Bauer S  Müller H  Bein T  Stock N 《Inorganic chemistry》2005,44(25):9464-9470
Following the strategy of using polyfunctional phosphonic acids for the synthesis of open-framework metal phosphonates, the phosphonocarboxylic acid (H2O3PCH2)2NCH2C6H4COOH was used in the hydrothermal synthesis of new Ba phosphonates. Its decomposition led to the first open-framework barium phosphonate [Ba3(O3PCH2NH2CH2PO3)2(H2O)4].3H2O. The synthesis was also successfully performed using iminobis(methylphosphonic acid), (H2O3PCH2)2NH, as a starting material, and the synthesis was optimized to obtain as a pure material. The reaction setup as well as the pH are the dominant parameters, and only a diffusion-controlled reaction led to the desired compound. The crystal structure was solved from single-crystal data: monoclinic; C2/c; a=2328.7(2), b=1359.95(7), and c=718.62(6) pm; beta=98.732(10) degrees ; V=2249.5(3)x10(6) pm3; Z=4; R1=0.036; and wR2=0.072 (all data). The structure of [Ba3(O3PCH2NH2CH2PO3)2(H2O)4].3H2O is built up from BaO8 and BaO10 polyhedra forming BaO chains and layers, respectively. These are connected to a three-dimensional metal-oxygen-metal framework with the iminobis(methylphosphonic acid) formally coating the inner walls of the pores. The one-dimensional pores (3.6x4 A) are filled with H2O molecules that can be thermally removed. Thermogravimetric investigations and temperature-dependent X-ray powder diffraction demonstrate the stability of the crystal structure up to 240 degrees C. The uptake of N,N-dimethylformamide and H2O by dehydrated samples is demonstrated. Furthermore, IR, Raman, and 31P magic-angle-spinning NMR data are also presented.  相似文献   

7.
The syntheses and crystal structures of the first copper(I) phosphonate, Cu2(H3L)(bipy)(2).2H2O 1 (H5L = C4HO3N(CH2PO3H2)2), which is also the first example of metal phosphonates formed by a type of organic reaction, and a novel luminescent Mn(II) squarate diphosphonate, {Mn[NH(CH2PO3H)2](H2O)2}2{Mn(C4O4)(H2O)4}.(C4H2O4) 2, have been reported. The structure of 1 features a layer architecture in which the Cu(I) centers are three coordinated, and the newly formed ligand acts as a bidentate metal linker. Compound 2 is composed of 1D chains of Mn[NH(CH2PO3H)2](H2O)2, 1D chains of {Mn(C4O4)(H2O)4}, as well as the neutral squaric acid molecules. These three types of building units are interconnected via hydrogen bonding.  相似文献   

8.
Liu B  Yin P  Yi XY  Gao S  Zheng LM 《Inorganic chemistry》2006,45(10):4205-4213
In the presence of organic templates, six diruthenium diphosphonates, namely, [H3N(CH2)3NH3]2[Ru2(hedp)2] (1), [H3N(CH2)4NH3]2[Ru2(hedp)2].4H2O (2), [H3N(CH2)5NH3]2[Ru2(hedp)2].4H2O (3), [H3N(CH2)3NH3][Ru2(hedp)(hedpH)].H2O (4), [H3N(CH2)4NH3][Ru2(hedpH(0.5))2].2H2O (5), and [H3N(CH2)5NH3]2[Ru2(hedp)2][Ru2(hedpH)2]] (6) [hedp = 1-hydroxyethylidenediphosphonate, CH3C(OH)(PO3)2] have been synthesized under hydrothermal conditions. Compounds 1-3 contain homovalent paddlewheel cores of Ru2(II,II)(hedp)2(4-) that are connected through edge-sharing of the [RuO5Ru] octahedra, resulting in infinite linear chains. Compounds 4-6 contain mixed-valent diruthenium(II,III) phosphonate paddlewheel cores of Ru2(II,III)(hedpH(n))2(3-2n)- that are connected by phosphonate oxygen atoms, forming distorted square-grid layers in 4 and 6 or a kagomé lattice in 5. Both the templates and the pH values are found to play important roles in directing the final products with particular topologies and oxidation states of the diruthenium unit. The magnetic studies show that weak antiferromagentic interactions are propagated between the homovalent diruthenium units in compounds 1-3. For compounds 4-6, weak ferromagnetic interactions are observed.  相似文献   

9.
Two large-pore metal-doped aluminophosphates, Mn4Al5(PO4)12[N(C2H4NH3)3]3[N(C2H4NH3)2·(C2H4NH2)](NH4)2·14H2O(Mn4-NJU) and Co4Al5(PO4)12[N(C2H4NH3)3][N(C2H4NH3)2(C2H4NH2)]3·(NH4)4·13H2O(Co4-NJU), which have the same open framework structures, were hydrothermally synthesized. The structures of these compounds consist of TO4 tetrahedra, which are linked together by corner-sharing to form an open framework with unique intersecting twelve-membered ring channels in three dimensions. The compounds crystallize in cubic space group I(-4)3m with a=1.6795(2) nm and V=4.7374(9) nm3 for Mn4-NJU, and a=1.67372(19) nm and V=4.6887(9) nm3 for Co4-NJU, respectively. Single crystal structure analyses show that the protruding O atoms of the frameworks of the compounds are linked to protonated 4-(2-aminoethyl)diethylenetriamine(TREN, C6H18N4) ions in the windows by means of hydrogen-bonding under the hydrothermal condition. It is also found that the components inside the super cages of the compounds are changeable, and the metal ions M2 (M=Mn, Co) and Al3 disorderedly occupy the same crystallographic positions.  相似文献   

10.
The reaction of nickel chloride with phenyl phosphonic acid under hydrothermal conditions resulted in the isolation of yellow-green single crystals of Ni[(C(6)H(5)PO(3))(H(2)O)]. The structure of the compound has been solved by X-ray single-crystal diffraction studies. Ni[(C(6)H(5)PO(3))(H(2)O)] crystallizes in the orthorhombic space group Pmn2(1) and is isostructural with the Mn(II), Fe(II), and Co(II) analogues. It presents the typical features of the hybrid 2D structures, consisting of alternating inorganic and organic layers. The former are formed by six-coordinated nickel(II) ions bridged by oxygen atoms into the layers. The inorganic layers are capped by the phenyl phosphonate groups, with phenyl groups of two adjacent ligands forming a hydrophobic bilayer region, and van der Waals contacts are established between them. The magnetic properties investigated by means of dc and ac susceptibility measurements point to an AF exchange coupling between nearest neighboring Ni(II) ions. Below 5 K, the compound orders magnetically showing the typical features of a canted antiferromagnet. The magnetic behavior and magnetic dimensionality of Ni[(C(6)H(5)PO(3))(H(2)O)] have been fully analyzed and compared to those of the Ni(II) parent compounds Ni[(RPO(3))(H(2)O)] (where R = CH(3), C(18)H(37)), which exhibit different symmetries of the inorganic layers and lengths of the R groups.  相似文献   

11.
Alkylation of (ArNHCH2CH2){(2-C5H4N)CH2}NH with RX [RX = MeI, 4-CH2=CH(C6H4)CH2Cl) and (2-C5H5N)CH2Cl] in the presence of base has allowed access to the sterically demanding multidentate nitrogen donor ligands, {(2,4,6-Me3C6H2)NHCH2CH2}{(2-C5H4N)CH2}NMe (L1), {(2,6-Me3C6H3)NHCH2CH2}{(2-C5H4N)CH2}NCH2(C6H4)-4-CH=CH2 (L2) and (ArNHCH2CH2){(2-C5H4N)CH2}2N (Ar = 2,4-Me2C6H3 L3a, 2,6-Me2C6H3 L3b) in moderate yield. L3 can also be prepared in higher yield by the reaction of (NH2CH2CH2){(2-C5H4N)CH2}2N with the corresponding aryl bromide in the presence of base and a palladium(0) catalyst. Treatment of L1 or L2 with MCl2 [MCl2 = CoCl2.6H2O or FeCl2(THF)1.5] in THF affords the high spin complexes [(L1)MCl2](M = Co 1a, Fe 1b) and [(L2)MCl2](M = Co 2a, Fe 2b) in good yield, respectively; the molecular structure of reveals a five-coordinate metal centre with bound in a facial fashion. The six-coordinate complexes, [(L3a)MCl2](M = Co 3a, Fe 3b, Mn 3c) are accessible on treatment of tripodal L3a with MCl2. In contrast, the reaction with the more sterically encumbered leads to the pseudo-five-coordinate species [(L3b)MCl2](M = Co 4a, Fe 4b) and, in the case of manganese, dimeric [(L3b)MnCl(mu-Cl)]2 (4c); in 4a and 4b the aryl-substituted amine arm forms a partial interaction with the metal centre while in 4c the arm is pendant. The single crystal X-ray structures of , 1a, 3b.MeCN, 3c.MeCN, 4b.MeCN and 4c are described as are the solution state properties of 3b and 4b.  相似文献   

12.
Hydrothermal reactions of a vanadate source, an appropriate Cu(II) source, bisterpy and an organodiphosphonate, H2O3P(CH2)nPO3H2(n= 1-5), in the presence of HF, yielded a family of materials of the type oxyfluorovanadium/copper-bisterpy/organodiphosphonate. Under similar reaction conditions, variations in diphosphonate tether length n provided the one-dimensional [{Cu2(bisterpy)}V2F2O2{HO3PCH2PO3}{O3PCH2PO3}](1) and [{Cu2(bisterpy)}V2F4O4{HO3P(CH2)2PO3H}](3), the two-dimensional [{Cu2(bisterpy)}V2F2O2(H2O)2{HO3P(CH2)2PO3}2] x 2H2O (2 x 2H2O), [{Cu2(bisterpy)(H2O2}V2F2O2{O3P(CH2)3PO3}{HO3P(CH2)3PO3H}(4) and [{Cu2(bisterpy)}V4F4O4(OH)(H2O){HO3P(CH2)5PO3}{O3P(CH2)5PO3}] x H2O (9 x H2O) and the three-dimensional [{Cu2(bisterpy)}3V8F6O17{HO3P(CH2)3PO3}4]0.8H2O (5 x 0.8H2O), [{Cu2(bisterpy)}V4F2O6{O3P(CH2)4PO3}2](8) and [{Cu2(bisterpy)(H2O)}2V8F4O8(OH)4{HO3P(CH2)5PO3H}2{O3P(CH2)5PO)}3] x 4.8H2O (10 x 4.8H2O). In addition, two members of the oxovanadium/Cu2(bisterpy)/organodiphosphonate family [{Cu2(bisterpy)}V2O4{HO3P(CH2)3PO3}2](6) and [{Cu2(bisterpy)}3V4O8(OH)2{O3P(CH2)3PO3}2{HO3P(CH2)3PO3}2] x 5H2O (7 x 5H2O) cocrystallized from the reaction mixture which provided 5. The overall architectures reveal embedded substructures based on V/P/O(F) clusters, chains, networks, and frameworks. In contrast to the oxovanadium/Cu2(bisterpy)/ organodiphosphonate family, several of the materials of this study also exhibit the direct condensation of vanadium polyhedra to produce binuclear and/or tetranuclear building units.  相似文献   

13.
The crystal and molecular structure of the layered weak-ferromagnet Fe[CH(3)PO(3)] x H(2)O has been solved by X-ray single-crystal diffraction techniques. Crystal data for Fe[CH(3)PO(3)] x H(2)O are the following: orthorhombic space group Pna2(1); a =17.538(2), b = 4.814(1), c = 5.719(1) A. The structure is lamellar, and it consists of alternating organic and inorganic layers along the a direction of the unit cell. The inorganic layers are made of Fe(II) ions octahedrally coordinated by five phosphonate oxygen atoms and one from oxygen of the water molecule. Each phosphonate group coordinates four metal ions, through chelation and bridging, making in this way a cross-linked Fe-O network. The resultant layers are then separated by bilayers of the methyl groups, with van der Waals contacts between them. The compound is air stable, and it dehydrates under inert atmosphere at temperatures above 120 degrees C. The oxidation state of the metal ion is +2, and the electronic configuration is d(6)( )()high spin (S = 2), as determined from dc magnetic susceptibility measurements from 150 K to ambient temperature. Below 100 K, the magnetic moment of Fe[CH(3)PO(3)] x H(2)O rises rapidly to a maximum at T(max) approximately equal to 24 K, and then it decreases again. The onset of peak at T = 25 K is associated with the 3D antiferromagnetic long-range ordering, T(N). The observed critical temperature, T(N), is like all the other previously reported Fe(II) phosphonates, and it appears to be nearly independent of the interlayer spacing in this family of hybrid organic-inorganic layered compounds. Below T(N), the compound behaves as a "weak ferromagnet", and represents the third kind of magnetic materials with a spontaneous magnetization below a finite critical temperature, ferromagnets and ferrimagnets being the other two types.  相似文献   

14.
Song HH  Zheng LM  Wang Z  Yan CH  Xin XQ 《Inorganic chemistry》2001,40(19):5024-5029
Four new zinc diphosphonate compounds with formulas [NH(3)(CH(2))(2)NH(3)]Zn(hedpH(2))(2).2H(2)O, 1, [NH(3)(CH(2))(n)()NH(3)]Zn(2)(hedpH)(2).2H(2)O, (n = 4, 2; n = 5, 3; n = 6, 4) (hedp = 1-hydroxyethylidenediphosphonate) have been synthesized under hydrothermal conditions at 110 degrees C and in the presence of alkylenediamines NH(2)(CH(2))(n)()NH(2) (n = 2, 4, 5, 6). Crystallographic data for 1: monoclinic, space group C2/c, a = 24.7422(15), b = 5.2889(2), c = 16.0338(2) A, beta = 117.903(1) degrees, V = 1856.17(18) A(3), Z = 4; 2: monoclinic, space group P2(1)/n, a = 5.4970(3), b = 12.1041(6), c = 16.2814(12) A, beta = 98.619(5) degrees, V = 1071.07(11) A(3), Z = 2; 3: monoclinic, space group P2(1)/n, a = 5.5251(2), b = 12.5968(3), c = 16.1705(5) A, beta = 99.182(1) degrees, V = 1111.02(6) A(3), Z = 2; 4: triclinic, space group P-1, a = 5.4785(2), b = 14.1940(5), c = 16.0682(6) A, alpha = 81.982(2) degrees, beta = 89.435(2) degrees, gamma = 79.679(2) degrees, V = 1217.11(8) A(3), Z = 2. In compound 1, two of the phosphonate oxygens are protonated. The metal ions are bridged by the hedpH(2)(2-) groups through three of the remaining four phosphonate oxygens, forming a one-dimensional infinite chain. The protonated ethylenediamines locate between the chains in the lattice. In compounds 2-4, only one phosphonate oxygen is protonated. Compounds 2 and 3 have a similar three-dimensional open-network structure composed of [Zn(2)(hedpH)(2)](n) double chains with strong hydrogen bonding interactions between them, thus generating channels along the [100] direction. The protonated diamines and water molecules reside in the channels. Compound 4 contains two types of [Zn(2)(hedpH)(2)](n) double chains which are held together by strong hydrogen bonds, forming a two-dimensional network. The interlayer spaces are occupied by the [NH(3)(CH(2))(6)NH(3)](2+) cations and water molecules. The significant difference between structures 2-4 is also featured by the coordination geometries of the zinc atoms. The geometries of those in 2 can be described as distorted octahedral, and those in 3 as distorted square pyramidal. In 4, two independent zinc atoms are found, each with a distorted octahedral and a tetrahedral geometry, respectively.  相似文献   

15.
Two novel divalent metal complexes with N-(phosphonomethyl)iminodiacetic acid, H(2)O(3)PCH(2)N(CH(2)CO(2)H)(2) (H(4)PMIDA), [Co(2)(PMIDA)(H(2)O)(5)] x H(2)O, 1, and [Zn(2)(PMIDA)(CH(3)CO(2)H)] x 2H(2)O, 2, have been synthesized and structurally characterized. The structure of complex 1 features two different kinds of Co(II) layers, namely, a cobalt phosphonate layer along the <100> plane and a cobalt carboxylate layer along the <300> plane. The Co(II) atoms in the phosphonate layer are octahedrally coordinated by 4 aqua ligands and 2 oxygen atoms from two phosphonic acid groups. Two Co(II) octahedra are bridged by a pair of phosphonic groups into a dimeric unit, and such dimers are interconnected into a layer through hydrogen bonding between aqua ligands. The Co(II) atoms in the carboxylate layer are octahedrally coordinated by a chelating PMIDA ligand, one aqua ligand, and one phosphonic oxygen atom from the neighboring PMIDA ligand. These Co(II) octahedra are interlinked by bridging carboxylic groups into a one-dimensional chain along the c-axis; such chains are held together by hydrogen bonds formed between carboxylic oxygen atoms and lattice water molecules, in such a way as to form a layer along the <300> direction. Two such layers are interconnected into a double layer via hydrogen bonding. These double layers are further interconnected with the Co(II) phosphonate layers through phosphonate tetrahedra along the a direction, resulting in the formation of a complicated three-dimensional network. The crystal structure of 2 contains a metal phosphonate and metal carboxylate hybrid layer along the <202> plane. One of the two zinc atoms in the asymmetric unit is tetrahedrally coordinated by four oxygen atoms from two phosphonic acid groups and two carboxylic groups; the other zinc atom is 5-coordinated by three oxygen atoms and a nitrogen atom from a chelating PMIDA ligand and one oxygen atom from the acetic acid. The above two types of zinc metal ions are interconnected by bridging carboxylic and phosphonic groups, resulting in the formation of a layered structure.  相似文献   

16.
Wozniak M  Nowogrocki G 《Talanta》1979,26(12):1135-1141
The acids under study differed from one another in length of the carbon chain [N + H(3)(CH(2))(n)PO(3)H(-) for n = 1, 2, 3], substitution on the nitrogen atom [R(1)R(2)N + HCH(2)PO(3)H(-) for R(1) = H; R(2) = Me, Et and R(1) = R(2)= Me, Et] or extent of branching on the carbon atom adjacent to functional groups [N + H(3)CR(3)R(4)PO(3)H(-) for R(3) = H; R(4) = Me, Et, nPr, iPr, nBu and R(3) = R(4) = Me]. Acidity constants and overall stability constants of complexes formed with Ca(II), Mg(II), Co(II), Ni(II), Cu(II), Zn(II) were obtained with the multiparametric refinement programs MUPROT and MUCOMP, applied to potentiometric data, obtained at 25 degrees , in a 0.1M potassium nitrate medium. In the most general case, the existing species are MHA(+), MA, M(OH)A(-), MH(2)A(2), MHA(-)(2) and MA(2-)(2), where A(2-) stands for the fully ionized ligand; preliminary examination of results points out some predominant microscopic forms.  相似文献   

17.
The first structurally authenticated example of a hexadentate chelating tertiary phosphine in which all six donors are bound to a single metal centre is described. The multidentate ligand (RP*,RP*,RP*)- and (RP*,RP*,SP*)-CH3C(CH2PPhC6H4NH2-2)3 has been prepared in 80% yield via the reaction of five equivalents of sodium (2-aminophenyl)phenylphosphide (generated in situ from (2-aminophenyl)phenylphosphine and sodium in thf) with 1,1,1-tri(bromomethyl)ethane in thf. The diastereomeric mixture has been complexed to cobalt(III) and the resulting pair of complexes, viz. [Co{(RP*,RP*,RP*)-CH3C(CH2PPhC6H4NH2-2)3}]Cl3 and [CoCl{(RP*,RP*,SP*)-CH3C(CH2PPhC6H4NH2-2)3}]Cl2, separated by ion exchange chromatography. The structure of the former (as the corresponding hexafluorophosphate salt) has been confirmed by X-ray crystallography and clearly shows all six donors of the P3N3 ligand coordinated to a single cobalt(III) centre. The related hexadentate ligand with internal N donors and terminal diphenylphosphino groups, viz. CH3C(CH2NHC6H4PPh2-2)3, has also been synthesised, albeit in low yield, via the reaction of [Li(tmeda)][2-NHC6H4PPh2] (generated in situ from (2-aminophenyl)diphenylphosphine, n-butyllithium and tmeda in diethyl ether) with 1,1,1-tri(iodomethyl)ethane in thf. No formation of a P3N3 ligand has been observed when either Na[2-PPhC6H4NH2] or [Li(tmeda)][2-NHC6H4PPh2] is reacted with the related tripodal substrate 1,1,1-tris(tolyl-4-sulfonyloxymethyl)ethane in thf. Rather the P-methyloxetane (+/-)-[3-{(2-aminophenyl)phenylphosphinomethyl}]-3-methyloxetane and the sulfonamide 2-(4-CH3C6H4SO2)NHC6H4PPh2 and the corresponding N-methyloxetane [3-{(2-diphenylphosphinophenyl)aminomethyl}]-3-methyloxetane have been isolated from the respective reactions. The structure of the sulfonamide has been confirmed by an X-ray analysis of the platinum(II) complex trans-[PtCl(CH3){2-PPh2C6H4NH(SO2C6H4CH(3-4)}2].  相似文献   

18.
A new organically templated layered uranium phosphate fluoride, [(CH(3))(2)NH(CH(2))(2)NH(CH(3))(2)][(UO(2))(2)F(2)(HPO(4))(2)] has been synthesized by hydrothermal reaction of UO(3), H(3)PO(4), HF, and (CH(3))(2)NCH(2)CH(2)N(CH(3))(2) at 140 degrees C. [(CH(3))(2)NH(CH(2))(2)NH(CH(3))(2)][(UO(2))(2)F(2)(HPO(4))(2)] has a layered crystal structure consisting of seven-coordinated UO(5)F(2) pentagonal bipyramids and four-coordinated HPO(4) tetrahedra. Each anionic layer containing three-, four-, and six-membered rings is separated by [(CH(3))(2)NH(CH(2))(2)NH(CH(3))(2)](2+) cations. The [(CH(3))(2)NH(CH(2))(2)NH(CH(3))(2)](2+) cations may be readily exchanged with the M(2+) ions (M = Ba, Sr and Ca) in water to give high crystalline AE(UO(2))(2)(PO(4))(2).6H(2)O (AE = Ca, Sr, Ba).  相似文献   

19.
Yin P  Gao S  Wang ZM  Yan CH  Zheng LM  Xin XQ 《Inorganic chemistry》2005,44(8):2761-2765
This paper reports the syntheses and characterization of four isomorphous compounds (NH(3)C(6)H(4)NH(3))M(2)(hedpH)(2).H(2)O [M = Fe (1), Co (2), Mn (3), Zn (4); hedp = C(CH(3))(OH)(PO(3))(2)]. Each contains two crystallographically different kinds of {M(2)(hedpH)(2)}(n) double chains, where the {M(2)(mu-O)(2)} dimer units are connected by O-P-O bridges. The double chains are connected through extensive hydrogen bonds, hence generating a three-dimensional supramolecular network. The temperature-dependent magnetic susceptibility measurements show dominant antiferromagnetic interactions in compounds 1-3, mediated through the mu-O and/or O-P-O bridges between the metal(II) centers. The magnetization measurements reveal that compounds 1-3 experience field-induced magnetic transitions at low temperatures.  相似文献   

20.
A new three-dimensional open-framework cobalt(Ⅱ)-tungsten(Ⅵ) phosphate,[H3NCH2CH2NH3]3·[Co3W4P4O28](1) has been synthesized from the reaction of CoCl2·6H2O,WO3,H3PO4,ethylenediamine and H2O.The title compound was fully characterized by infrared spectroscopy,elemental analysis,magnetic properties,thermogravimetric analysis,XPS and single-crystal X-ray diffraction.The compound crystallized in a tetragonal space group I4(1)/a with a=1.7118(4) nm,c=1.0773(2) nm,V =3.1568(11) nm3,Z =4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号