首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gold, Au/Ag, Au/Pt and Au/Pd bimetallic nanoparticles with varying mol fractions were synthesized in ethylene glycol and glycerol, using the microwave technique in the presence of a stabilizer poly(N-vinylpyrrolidone) (PVP). It was found that bimetallic colloids of Au/Ag, Au/Pd and Au/Pt form an alloy either on co-reduction of respective metal ions or on mixing individual sols.  相似文献   

2.
Pd/ZnO和Ag/ZnO复合纳米粒子的制备、表征及光催化活性   总被引:11,自引:0,他引:11  
 用焙烧前驱物碱式碳酸锌的方法制备了ZnO纳米粒子,采用光还原沉积贵金属的方法制备了Pd/ZnO和Ag/ZnO复合纳米粒子,并利用ICP,XRD,TEM和XPS等测试技术对样品进行了表征,初步探讨了贵金属在ZnO纳米粒子表面形成原子簇的原因.以光催化氧化气相正庚烷为模型反应,考察了样品的光催化活性以及贵金属沉积量对催化剂活性的影响.结果表明:沉积适量的贵金属,ZnO纳米粒子光催化剂的活性大幅度提高.同时,深入探讨了表面沉积贵金属的ZnO纳米粒子光催化剂活性有所提高的内在原因.  相似文献   

3.

The evolution of spectral and luminescent properties of Ag-containing composite coatings prepared by liquid technique has been studied. Double stabilization allows forming thin oxide films containing luminescent small Agn (n?<?5) molecular clusters using the liquid technique. These clusters are non-stable intermediate products during the formation of Ag nanoparticles from the ions and neutral atoms. It was found that small luminescent Agn molecular clusters (n?<?5) formed in the solutions at the presence of polyvinylpyrrolidone (PVP) remain in PVP/metal nitrates composite coatings and in the calcined metal oxide coatings. Spatial separation of small Ag molecular clusters in the coatings by the oxide nanoparticles of ZnO and MgO prohibits silver clusters growth and non-luminescent silver nanoparticles formation and allows saving coatings’ luminescence properties during thermal treatment.

  相似文献   

4.
A new method was developed to prepare highly dispersed Pt nanoparticles on carbon black to use as proton exchange membrane (PEM) fuel cell catalysts. This method involves using a polymer, poly(vinylpyrrolidone) (PVP), to prevent particle aggregation and thereby reduce nanoparticle sizes to achieve high dispersion. It was found that Pt nanoparticles mediated by PVP are smaller than those obtained without PVP and have a narrower size distribution. Well-dispersed Pt nanoparticles with metal loadings from 5 to 35 wt % were obtained on carbon black (Vulcan XC-72R). It was found that well-dispersed Pt nanoparticles on carbon black could be synthesized at a PVP monomers-to-Pt atoms ratio of 0.1 under our experimental conditions. Larger amounts of PVP did not produce smaller nanoparticles, but rather reduced the Pt mass loading on carbon black. The morphology of the Pt nanoparticles that were supported on carbon black was characterized with transmission electron microscopy and X-ray diffraction. Their active surface areas were determined using cyclic voltammetry in a sulfuric acid solution. High Pt dispersion was obtained for the catalysts synthesized with PVP mediation, even at Pt loadings up to 35 wt %. The catalysts prepared with PVP mediation generally showed larger active specific areas than did those prepared without PVP.  相似文献   

5.
The metal nanoparticles (NPs) have been prepared using a water-in-oil microemulsion system of water/dioctyl sulfosuccinate sodium salt (aerosol-OT, AOT)/isooctane at 25 °C. Since the NPs produced in this system can endure forcing conditions (100 °C), this system has been used for the synthesis of nano-catalysts in the Heck reactions. FE-SEM, DLS, and UV/vis analyses have been used to characterize the surface morphology, size, and proof of the formation of all the prepared metal NPs, respectively. In addition, the effects of some reaction parameters (here, bases and solvents) were optimized. Differences in the catalytic properties of the synthesized NPs have also been investigated. Consequently, the Pd/Cu (4:1) bimetallic NP showed the highest activity in the C–C coupling reaction of the iodobenzene with the styrene, thus it is employed as the superior catalyst in this study. Therefore, the Pd/Cu (4:1) bimetallic NPs were further investigated using TEM and XRD analyses. This catalyst system is also reusable for six runs with very negligible reduction in the efficiency.  相似文献   

6.
用焙烧前驱物碱式碳酸锌的方法制备了ZnO纳米粒子,采用光还原沉积贵金属的方法分别得到了质量分数为0.5%的Pd/ZnO和Ag/ZnO复合纳米粒子,并利用XRD、TEM、XPS和SPS等测试技术对样品进行表征.初步探讨了贵金属在ZnO纳米粒子表面形成原子簇的原因及沉积贵金属对ZnO纳米粒子表面光电压信号的影响.以光催化氧化气相正庚烷为模型反应,考察了沉积贵金属对ZnO纳米粒子光催化活性的影响,并探讨了光催化活性有所提高的内在原因.结果表明, ZnO纳米粒子沉积贵金属后,其表面光电压信号明显下降,而光催化活性却大大地提高,这说明可以通过表面光电压谱的测试来初步的评估纳米粒子的光催化活性,即粒子的表面光电压信号越弱,其光催化活性越高.  相似文献   

7.
《Chemphyschem》2004,5(1):68-75
Spherical silver and gold nanoparticles with narrow size distributions were conveniently synthesized in aqueous solution by a novel electrochemical method. The technological keys to the electrochemical synthesis of monodispersed metallic nanoparticles lie in the choice of an ideal stabilizer for the metallic nanoclusters and the use of a rotating platinum cathode. Poly(N‐vinylpyrrolidone) (PVP) was chosen as the stabilizer for the silver and gold clusters. PVP not only protects metallic particles from agglomeration, but also promotes metal nucleation, which tends to produce small metal particles. Using a rotating platinum cathode effectively solves the technological difficulty of rapidly transferring the (electrochemically synthesized) metallic nanoparticles from the cathode vicinity to the bulk solution, avoiding the occurrence of flocculates in the vicinity of the cathode, and ensuring the monodispersity of the particles. The particle size and particle size distribution of the silver and gold nanoparticles were improved by adding sodium dodecyl benzene sulfonate (SDBS) to the electrolyte. The electrochemically synthesized nanoparticles were characterized by TEM and UV/Vis spectroscopy.  相似文献   

8.
The hydrogen storage properties of metal nanoparticles change with particle size. For example, in a palladium–hydrogen system, the hydrogen solubility and equilibrium pressure for the formation of palladium hydride decrease with a decrease in the particle size, whereas hydrogen solubility in nanoparticles of platinum, in which hydrogen cannot be stored in the bulk state, increases. Systematic studies of hydrogen storage in Pd and Pt nanoparticles have clarified the origins of these nanosize effects. We found a novel hydrogen absorption site in the hetero‐interface that forms between the Pd core and Pt shell of the Pd/Pt core/shell‐type bimetallic nanoparticles. It is proposed that the potential formed in the hetero‐interface stabilizes hydrogen atoms rather than interstitials in the Pd core and Pt shells. These results suggest that metal nanoparticles a few nanometers in size can act as a new type of hydrogen storage medium. Based on knowledge of the nanosize effects, we discuss how hydrogen storage media can be designed for improvement of the conditions of hydrogen storage.  相似文献   

9.
The UV–visible spectral characteristics of the Ag, Tl and bimetallic Tl/Ag clusters stabilized by polyethylene glycol and produced by radiation-induced reduction using both gamma and electron irradiation, have been studied in aqueous medium. A comparison of the two reduction methods, suggested that the high dose rate conditions of electron irradiation resulted in intimately alloyed mixed clusters with almost no aggregation at higher dose. Whereas, under the lower dose rate conditions of gamma irradiation, the bimetallic clusters with core of Ag and shell of Tl were formed due to the reduction of Tl+ ions over the initially produced Ag nanoparticles. Only the thallium part of the mixed clusters were oxidized by both methyl viologen (MV2+) chloride and oxygen, leaving behind absorption due to Ag nanoparticles.  相似文献   

10.
采用聚乙烯吡咯烷酮(PVP)保护的化学共还原法制备了Pd/Co双金属纳米颗粒, 研究了PVP及还原剂(NaBH4)的用量、金属盐浓度、金属比例等对Pd/Co双金属纳米颗粒催化NaBH4制氢性能的影响. 透射电子显微镜(TEM)的结果表明, 所制备的Pd/Co双金属纳米颗粒的平均粒径在1.5-2.8 nm之间. Pd/Co双金属纳米颗粒(BNPs)的催化活性远高于Pd与Co单金属纳米颗粒的活性; 当Pd/Co的理论原子比为1/9时, 双金属纳米颗粒的催化活性最高可达15570 mol·mol-1·h-1 (文中纳米颗粒的催化活性均为每摩尔Pd的活性). 密度泛函理论(DFT)的计算结果表明, Pd原子与Co原子之间发生电荷转移, 使得Pd原子带负电而Co原子带正电, 荷电的Pd和Co原子进而成为催化反应的活性中心. 所制备的Pd/Co双金属纳米颗粒具有很好的催化耐久性, 即使重复使用5次后, 该催化剂仍具有较高的催化活性, 且使用后的纳米颗粒催化剂也没有出现团聚现象. 双金属纳米颗粒催化NaBH4水解反应的活化能约为54 kJ·mol-1.  相似文献   

11.
Poly(N‐vinyl‐2‐pyrrolidone) (PVP) has been used extensively to stabilize the surface of noble metal nanoparticles against aggregation and also to produce anisotropic nanostructures. Naturally, it is very important to understand the effect of such surface stabilization by PVP on the catalytic activity of these nanoparticles. This communication investigates through DFT calculations the electronic properties of PVP stabilized 13‐atom Ag cluster for catalytic activation of nitrobenzene (NB). These computations suggest that poly(N‐vinyl‐2‐pyrrolidone) (PVP) interact with silver (Ag) cluster mainly through oxygen atom and acts not only as a stabilizer to prevent the aggregation of Ag clusters but also as an electron donor to activate the Ag clusters for further reaction. Natural Bonding Orbital (NBO) calculations show that catalytic activation of NB by PVP passivated Ag cluster occurs due to interaction of the oxygen of the nitro group with the Ag cluster. Weak back donation of electrons from M(dπ) orbital of Ag to antibonding σ* of one of the N O bond, facilitates the formation of the nitroso intermediate. To understand the extent and the nature of this interaction better, vibrational frequency calculation of nitrobenzene association with Ag13‐2PVP cluster is carried out. Red shift in the frequencies is consequence of strong interaction with that of silver cluster present in Ag13‐2PVP‐NB model.  相似文献   

12.
The method of ultrasound irradiation is used for anchoring metallic nanocrystals (Ag, Au, Pd, and Pt) onto the surface of polystyrene spheres. In former studies, almost all the sonochemically prepared, coated metallic nanomaterials were formed as amorphous nanoparticles (Pol, V. G.; et al. Langmuir 2002, 18, 3352; Pol, V. G.; et al. Chem. Mater. 2003, 15, 1111; Zhong, Z. Y.; et al. Chem. Mater. 1999, 11 (9), 2350; Pol, V. G.; et al. Chem. Mater. 2003, 15, 1378), which were coated on various substrates (silica spheres, carbon spherules, titania, and alumina). On the other hand, the noble metal nanoparticles deposited on polystyrene spheres via ultrasound irradiation yielded nanocrystalline Ag, Au, Pd, and Pt particles on the surface of polystyrene as as-synthesized materials. The sonochemical mechanism is proposed based on chemical interactions between the particles.  相似文献   

13.
Polyacrylamide grafted poly(vinyl alcohol)/polyvinylpyrrolidone (PAM-g-PVA/PVP) semi-interpenetrating network (semi-IPN) hydrogels were designed and prepared via a simple free radical polymerization reaction process initiated by a PVA-(NH4)2Ce(NO3)6 redox system. The structure of the PAM-g-PVA/PVP semi-IPNs was characterized by a Fourier transform infrared spectroscopy. The morphologies of PAM-g-PVA/PVP hydrogels and PAM-g-PVA/PVP/Ag nanocomposite hydrogels were examined by scanning electron microscopy and transmission electron microscopy (TEM). The experimental results indicated that the PAM, PVA or PVP chains can efficiently act as stabilizing agents for Ag nanoparticles. TEM investigation of sample morphology showed the presence of nearly spherical-, square- or rectangular-shaped Ag nanoparticles with diameters ranging from 10 to 60 nm. The characteristic surface plasmon resonance band appeared at 390–400 run as a result of the immobilization of Ag nanoparticles within the hydrogel matrices. The self-assembly of Ag nanoparticles and the swelling behavior of the resulting nanocomposites can be controlled and modulated by altering the mole fraction of PVP in the PAM-g-PVA/PVP semi-IPNs.  相似文献   

14.
We report that noble metal nanopartcles (Pd,Pt,Au,and Ag) decorated-graphene nanosheets can be synthesized with the template of graphene oxide by a one-pot solution-based method.The resulting hybrid materials are characterized by transmission electronic microscopy,energy dispersive X-ray spectroscopy,scanning electronic microscopy,atomic force microscopy,X-ray diffraction,and Raman spectroscopy,which demonstrate that the metal nanoparticles have been uniformly deposited on the surfaces of graphene nanosheet...  相似文献   

15.
利用硼氢化钠还原含其它金属盐的氯铂酸形成双金属合金纳米催化剂.Ru和Co的加入能提高催化剂的活性,当Pt/Ru摩尔比为5∶1、Pt/Co摩尔比为7∶1时,双金属协同效应最明显;Cu、Au、Ni的加入不同程度的降低了催化剂的活性.对Pt/Ru和Pt/Co体系,PVP的含量和反应温度都对催化反应的活性有影响.  相似文献   

16.
An environmentally benign method for the synthesis of noble metal nanoparticles has been reported using aqueous solution of gum kondagogu (Cochlospermum gossypium). Both the synthesis, as well as stabilization of colloidal Ag, Au and Pt nanoparticles has been accomplished in an aqueous medium containing gum kondagogu. The colloidal suspensions so obtained were found to be highly stable for prolonged period, without undergoing any oxidation. SEM-EDXA, UV-vis spectroscopy, XRD, FTIR and TEM techniques were used to characterize the Ag, Au and Pt nanoparticles. FTIR analysis indicates that -OH groups present in the gum matrix were responsible for the reduction of metal cations into nanoparticles. UV-vis studies showed a distinct surface plasmon resonance at 412 and 525 nm due to the formation of Au and Ag nanoparticles, respectively, within the gum network. XRD studies indicated that the nanoparticles were crystalline in nature with face centered cubic geometry. The noble metal nanoparticles prepared in the present study appears to be homogeneous with the particle size ranging between 2 and 10 nm, as evidenced by TEM analysis. The Ag and Au nanoparticles formed were in the average size range of 5.5±2.5 nm and 7.8±2.3 nm; while Pt nanoparticles were in the size range of 2.4±0.7 nm, which were considerably smaller than Ag and Au nanoparticles. The present approach exemplifies a totally green synthesis using the plant derived natural product (gum kondagogu) for the production of noble metal nanoparticles and the process can also be extended to the synthesis of other metal oxide nanoparticles.  相似文献   

17.
The title compounds were prepared by reacting the elements in sealed tantalum tubes in a water-cooled sample chamber in a high-frequency furnace. X-ray powder and single-crystal investigations showed isotypism with the ZrNiAl type, space group P&6macr;2m: a=750.1(1) pm, c=404.10(4) pm, wR2=0.0703, 250 F2 values, 14 parameters for GdPdMg, a=768.0(2) pm, c=419.92(9) pm, wR2=0.0579, 261 F2 values, 16 parameters for GdAgMg, and a=738.0(1) pm, c=409.02(5) pm, wR2=0.0742, 244 F2 values, 14 parameters for GdPtMg. The structures contain two crystallographically different transition metal (T) sites which both have a tricapped trigonal prismatic coordination: [T(1)Gd6Mg3] and [T(2)Mg6Gd3]. Together the transition metal and magnesium atoms build three-dimensional networks in which the gadolinium atoms fill distorted hexagonal channels. The magnesium position of the silver compound shows a small degree of magnesium/silver mixing resulting in the composition GdAg1.06(1)Mg0.94(1) for the crystal investigated. The magnetic properties of all compounds were investigated using AC and DC susceptibility as well as 155Gd Mössbauer spectroscopy measurements. All investigated materials show irreversibilities between field cooled and zero-field-cooled DC magnetizations and magnetic hysteresis behavior as is typical for ferromagnets. The remanent magnetizations and coercive fields are relatively small. The Curie temperatures were determined from inflection points of the experimental susceptibilities. Additional anomalies below the ferromagnetic transitions suggest spin-reorientation processes.  相似文献   

18.
Quantum calculations of interaction of the molecular hydrogen with transition-metal clusters have been performed. The aim of the project is to compare the results for different metals and different methods of calculations. The calculations have been mostly based on the gradient-corrected methods of the density functional theory. The list of the exchange-correlation functionals includes: the gradient corrected functional BP86, the hybrid functionals B3P86, B3LYP, B3PW9, and the local SVWN functional. The calculations of the potential energy surface (PES) for the hydrogen molecule positioned over the planar Pd5 clusters have been performed. It was found that the H–H bond activation is without barrier for most of the functionals used. However, the results obtained for the B3LYP functional suggest very small potential barrier, of the order of 0.003 eV. The calculations of the PES for dihydrogen in contact with metal clusters have been performed for Ni5, Ag5, Cu5 clusters and for mixed clusters Ag4Pd, AgPd4, NiCu4, and NiPd4. The dissociation paths for all the cases with the exception of Ag5 and Cu5 have been found and the dissociation energies and activation barriers have been estimated.  相似文献   

19.
Structures of small clusters of Ni, Pd, Pt, Cu, Ag, and Au with n=2–34 and n=55 atoms are calculated as functions of number of atoms and temperature by the simulated annealing Monte Carlo method using an embedded atom potential.  相似文献   

20.
Extraordinarily stable , monodisperse noble metal nanoparticles can be prepared by using dendrimers as both templates and stabilizers. Dendrimer‐encapsulated Pd nanoparticles (see the schematic representation) exhibit high catalytic activity for the hydrogenation of alkenes in water. The catalytic activity and selectivity of these materials can be controlled by adjusting the dendrimer generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号