首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Catalytic asymmetric hydrogenation of N-Boc-protected pyrroles proceeded with high enantioselectivity by using a ruthenium catalyst modified with a trans-chelating chiral bisphosphine PhTRAP. The ruthenium catalyst prepared from Ru(eta3-methallyl)2(cod) and (S,S)-(R,R)-PhTRAP in the presence of triethylamine was the most enantioselective for the asymmetric hydrogenation of methyl pyrrole-2-carboxylate, giving the desired (S)-proline derivative with 79% ee in 92% yield. Moreover, 2,3,5-trisubstituted pyrroles bearing a large substituent at the 5-position were hydrogenated with 93-99.7% ee. The asymmetric reduction of 4,5-dimethylpyrrole-2-carboxylate gave only all-cis isomer and created three chiral centers with high degree of stereocontrol in a single process. This is the first highly enantioselective reduction of pyrroles.  相似文献   

2.
The proclivity of alpha-branched N-2'-benzyl-3'-phenylpropionyl derivatives of (S)-4-benzyl-5,5-dimethyl-, (S)-4-phenyl-5,5-dimethyl-, (S)-4-isopropyl-5,5-dimethyl-, (S)-4-benzyl- and (S)-4-benzyl-5,5-diphenyl-oxazolidin-2-ones to generate directly 2-benzyl-3-phenylpropionaldehyde upon hydride reduction with DIBAL is investigated. The (S)-4-benzyl-5,5-dimethyl-derivative proved optimal for inhibition of endocyclic nucleophilic attack, giving 2-benzyl-3-phenylpropionaldehyde in good yield upon reduction. Application of this methodology for the asymmetric synthesis of chiral aldehydes via diastereoselective enolate alkylation of a range of (S)-N-acyl-4-benzyl-5,5-dimethyloxazolidin-2-ones to afford and array of alpha-substituted-N-acyl-5,5-dimethyloxazolidin- 2-ones (85-94% de) and subsequent reduction with DIBAL afforded directly non-racemic alpha-substituted aldehydes without loss of stereochemical integrity (87-94% ee). The extension of this protocol for the asymmetric synthesis of beta-substituted aldehydes is demonstrated, via the diastereoselective conjugate addition of a range of organocuprates to (S)-N-acyl-4-phenyl-5,5-dimethyloxazolidin-2-ones which proceeds with high diastereoselectivity (generally > 95% de). Reduction of the conjugate addition products with DIBAL gives non-racemic beta-substituted aldehydes in high yields and in high ee (generally > 95% ee). This methodology is exemplified by the asymmetric synthesis of (R)-3-isopropenylhept-6-enal, which has previously been used in the synthesis of (3Z,6R)-3-methyl-6-isopropenyl-3,9-decadien-1-yl acetate, a component of the sex pheromones of the California red scale.  相似文献   

3.
Both enantiomers of Wieland-Miescher ketone [3,4,8, 8a-tetrahydro-8a-methyl-1,6(2H,7H)-naphthalenedione], in a highly enantiomerically enriched form, became readily available by a newly developed kinetic resolution with yeast-mediated reduction. From a screening of yeast strains, Torulaspora delbrueckii IFO 10921 was selected. The collected cells of this strain, obtained by an incubation in a glucose medium, smoothly reduced only the isolated carbonyl group of the (S)-enantiomer, while the (R)-enantiomer remained intact. Starting from both enantiomers ( approximately 70% ee) prepared by an established proline-mediated asymmetric Robinson annulation, the reduction with T. delbrueckii gave the (R)-enantiomer (98% ee) and the corresponding alcohol (4aS,5S)-4,4a, 5,6,7,8-hexahydro-5-hydroxy-4a-methyl-2(3H)-naphthalenone (94% ee, 94% de) in preparative scale in nearly quantitative yields. An approach for the asymmetric synthesis of the Wieland-Miescher ketone was also successful. 2-Methyl-2-(3-oxobutyl)-1,3-cyclohexanedione, the prochiral precursor, was reduced with this strain to give a cyclic acetal form of (2S, 3S)-3-hydroxy-2-methyl-2-(3-oxobutyl)cyclohexanone, in a stereomerically pure form.  相似文献   

4.
Catecholboronate esters formed by asymmetric hydroboration of arylalkenes are not directly converted to amines by reaction with hydroxylamine-O-sulfonic acid. Prior conversion to a trialkylborane by reaction with ZnEt2 or MeMgCl permits a subsequent amination reaction to occur with essentially complete retention of configuration, leading to a range of primary alpha-arylalkylamines in up to 97% enantiomeric excess (ee). Secondary, but not tertiary amines may be formed by a related pathway when in situ generated alkylchloramines are employed as the aminating agent. The catalytic asymmetric hydroboration, beta-alkylation and amination steps may be combined in a single stage. Overall, this provides a practical procedure for the synthesis of enantiomerically enriched arylamines, exemplified inter alia by the synthesis of (S)-1,2,3,4-tetrahydro-1-naphthylamine in 95-97% ee and of (R)-N-(cyclohexyl)-1'-(4-methoxyphenyl)ethylamine in 93% ee.  相似文献   

5.
The enantioselective synthesis of optically active secondary amines via the asymmetric reduction of N-substituted ketimines with various chiral hydride reagents, such as Itsuno's reagent (1), Corey's reagent (2), K glucoride (3), Sharpless' reagent (4), and Mosher's reagent (5) has been investigated. Among the hydride reagents examined, 1 gave the best results in terms of asymmetric induction. Thus, the reduction of N-phenylimine derivatives of aromatic ketones with 1 provided the corresponding amines in 96–98% yields with high optical induction, such as 73 % ee for acetophenone N-phenylimine (6a), 87 % ee for propiophenone N-phenylimine (6b), 88 % ee for bulyrophenone N-phenylimine (6c), and 71 % ee for isobutyrophenone N-phenylimine (6d). In the case of N-alkyl ketimine derivatives, the reduction afforded somewhat lower optical inductions as compared to those of N-phenyl derivatives, giving 46 % ee for acetophenone N-benzylimine (6f), 52 % ee for acetophnone N-n-heptylimine (6g) and 43 % ee for acetophenone N-cyclohexylimine (6h). However, the substitution of a bulky alkyl group on nitrogen of the ketimines increases remarkably the optical induction of product amine, such as 80 % ee for acetophenone N-tert-butylimine (6e). The reduction of N-substituted aliphatic ketimines gave very low optical inductions (7.4 – 24 % ee). The catalytic effects of oxazaborolidines (1a and 2a) in the reduction of ketimines with 1 and 2 were also examined.  相似文献   

6.
In the presence of a rhodium catalyst (5 mol %) generated in situ from [Rh(cod)Cl](2) and (S,S')-(R,R')-C(2)-ferriphos (4a), the asymmetric ring-opening reaction of azabenzonorbornadienes (1a-m) with various aliphatic and aromatic amines (2a-l) proceeded with high enantioselectivity (up to >99% ee) to give the corresponding 1,2-diamine derivatives 3 in high yields. In the specific case of pyrrolidine as nucleophile, Et(3)NHCl was necessary as an additive for good reactivity and enantioselectivity. Additionally, a practical protocol was developed for the ring-opening of 1a with volatile amines at elevated temperatures and standard pressure, using R(2)NH(2)I and i-Pr(2)NEt. The experimental results showed that the nature of the chiral ligand has the significant impact on the reactivity of the catalyst and the use of excess amount (2.2 eq to Rh) of the chiral ligand plays an important role to improve the enantioselectivity in the present asymmetric reaction.  相似文献   

7.
N-Aryl indoline-type aminophosphines 1a-c were obtained in good yields by a nucleophilic aromatic substitution (S(N)Ar) reaction followed by silane reduction. Aminophosphine 1d was also prepared from 2,3-difluorobenzaldehyde (4) via dimethylhydrazone. Optical resolution of C(aryl)-N(amine) bond atropisomers was achieved using (S)-(+)-di-mu-chlorobis[2-[(dimethylamino)ethyl]phenyl-C(2),N]dipalladium(II) ((S)-10). The determination of absolute configuration and the investigation of the rotation barrier for C(aryl)-N(amine) bond axial stability of an aminophosphine 1 are described. Finally, the ability of the chiral phosphine ligand 1 is demonstrated in a catalytic asymmetric reaction, such as a palladium-catalyzed asymmetric allylic alkylation of 1,3-diphenyl-2-propenyl acetate with dimethyl malonate (up to 95% ee).  相似文献   

8.
[Reaction: see text] Addition of lithium bis(trimethylsilyl)amide to perfluorinated ketones 1a-j affords (E)-N-TMS-ketimines 2a-j that are reduced in situ to afford racemic perfluoromethylated amine hydrochloride salts 3a-j in 54-97% yields. Solvolysis of the N-Si bond in MeOH leads to formation of bench-stable, isolable N-H imine Z/E isomer mixtures along with a methanol adduct. Enantioselective reduction of these three-component mixtures provides the first catalytic asymmetric synthesis of trifluoromethylated amines in 72-95% yields and 75-98% ee.  相似文献   

9.
Pd/bisphosphines complexes are highly effective catalysts for asymmetric hydrogenation of activated imines in trifluoroethanol. The asymmetric hydrogenation of N-diphenylphosphinyl ketimines 3 with Pd(CF3CO2)/(S)-SegPhos indicated 87-99% ee, and N-tosylimines 5 could gave 88-97% ee with Pd(CF3CO2)/(S)-SynPhos as a catalyst. Cyclic N-sulfonylimines 7 and 11 were hydrogenated to afford the useful chiral sultam derivatives in 79-93% ee, which are important organic synthetic intermediates and structural units of agricultural and pharmaceutical agents.  相似文献   

10.
In the palladium-catalyzed asymmetric hydrosilylation of styrene (3a) with trichlorosilane, several chiral monophosphine ligands, (R)-2-diarylphosphino-1,1'-binaphthyls (2a-g), were examined for their enantioselectivity. The highest enantioselectivity was observed in the reaction with (R)-2-bis[3,5-bis(trifluoromethyl)phenyl]phosphino-1,1'-binaphthyl (2g), which gave (S)-1-phenylethanol (5a) of 98% ee after oxidation of the hydrosilylation product, 1-phenyl-1-(trichlorosilyl)ethane (4a). The palladium complex of 2g also efficiently catalyzed the asymmetric hydrosilylation of substituted styrenes on the phenyl ring or at the beta position to give the corresponding chiral benzylic alcohols of over 96% ee. Deuterium-labeling studies on the hydrosilylation of regiospecifically deuterated styrene revealed that beta-hydrogen elimination from 1-phenylethyl(silyl)palladium intermediate is very fast compared with reductive elimination giving hydrosilylation product when ligand 2g is used. The reaction of o-allylstyrene (9) with trichlorosilane catalyzed by (R)-2g/Pd gave (1S,2R)-1-methyl-2-(trichlorosilylmethyl)indan (10) (91% ee) and (S)-1-(2-(propenyl)phenyl)-1-trichlorosilylethanes (11a and 11b) (95% ee). On the basis of their opposite configurations at the benzylic position, a rationale for the high enantioselectivity of ligand 2g is proposed.  相似文献   

11.
The highly diastereoselective samarium diiodide and D(2)O-promoted conjugate reduction of homochiral (E)- and (Z)-benzylidene and isobutylidene diketopiperazines (E)-5,7 and (Z)-6,8 has been demonstrated. This methodology allows the asymmetric synthesis of methyl (2S,3R)-dideuteriophenylalanine 27 in > or = 95% de and >98% ee, and (2S,3R)- or (2S,3S)-dideuterioleucine-(S)-phenylalanine dipeptides 37 and 38 in moderate de, 66% and 74% respectively. A mechanism is proposed to account for this process.  相似文献   

12.
A new, chiral bis-Ti(IV) oxide of type 1 was successfully designed and can be utilized for strong activation of aldehyde carbonyls, thereby allowing a new catalytic enantioselective allylation of aldehydes with allyltributyltin. The chiral bis-Ti(IV) catalyst (S,S)-1 can be readily prepared either by treatment of bis(triisopropoxy)titanium oxide with (S)-binaphthol or by reaction of ((S)-binaphthoxy)isopropoxytitanium chloride with silver(I) oxide. Reaction of hydrocinnamaldehyde with allyltributyltin (1.1 equiv) under the influence of in situ generated chiral bis-Ti(IV) oxide (S,S)-1 (10 mol %) in CH2Cl2 at 0 degrees C for 4 h afforded 1-phenyl-5-hexen-3-ol in 84% yield with 99% ee. The present asymmetric allylation using nonracemic bis-Ti(IV) oxide 1 with partially resolved (S)-binaphthol exhibits a positive nonlinear effect in correlating the enantiopurity of allylation product with the ee of (S)-binaphthol. This asymmetric approach provides a very useful way for obtaining high reactivity and selectivity by the simple introduction of the M-O-M unit in the design of chiral Lewis acid catalysts.  相似文献   

13.
A new strategy in asymmetric synthesis is described in which the desymmetrisation of a C(2h)-symmetric molecule is followed by a subsequent enantioselective 'proof-reading' step. The double asymmetric ring-opening of the bis-epoxide (1R*,3R*,5S*,7S*)-4,8-dioxa-tricyclo[5.1.0.0(3,5)]octane with azidotrimethylsilane, catalysed by a chiral chromium Salen catalyst, was studied. The reaction involves the initial asymmetric ring-opening of the bis-epoxide to give the intermediate in moderate enantiomeric excess (ca. 50% ee); the second ring-opening step yields the required diazido diol, (1S,3S,4S,6S)-4,6-diazidocyclohexane-1,3-diol, in 72% yield and 70% ee. The origin of proof reading stems from the diversion of the minor enantiomer of the intermediate to a centrosymmetric by-product, a process which improves the enantiomeric excess of the required product. Using alternative conditions, the reaction was optimised to yield the required product in >98% ee.  相似文献   

14.
[formula: see text] The bakers' yeast reduction of 3-(1,3-benzodioxol-5-yl)-6-propoxy-1H-inden-1-one 4 has been shown to give (S)-3-(1,3-benzodioxol-5-yl)-2,3-dihydro-6-propoxy-1H-indan-1-one 6 in 65% yield with high enantioselectivity (> 99.0% ee), a key intermediate for the synthesis of the endothelin receptor antagonist SB 217242. In addition, the substituted 3-arylinden-1-ones 10a-e gave equally high enantioselectivity for the 3-arylindan-1-one products 13a-e. Mechanistic studies of the reaction indicate the operative pathway to be an asymmetric conjugate reduction, wherein the hydride transfer from NAD(P)H occurs from the Re-face of the indenone substrate.  相似文献   

15.
We report the first biocatalytic route to sulfinamides (R-S(O)-NH2), whose sulfur stereocenter makes them important chiral auxiliaries for the asymmetric synthesis of amines. Subtilisin E did not catalyze hydrolysis of N-acetyl or N-butanoyl arylsulfinamides, but did catalyze a highly enantioselective (E > 150 favoring the (R)-enantiomer) hydrolysis of N-chloroacetyl and N-dihydrocinnamoyl arylsulfinamides. Gram-scale resolutions using subtilisin E overexpressed in Bacillus subtilis yielded, after recrystallization, three synthetically useful auxiliaries: (R)-p-toluenesulfinamide (42% yield, 95% ee), (R)-p-chlorobenzenesulfinamide (30% yield, 97% ee), and (R)-2,4,6-trimethylbenzenesulfinamide (30% yield, 99% ee). Molecular modeling suggests that the N-chloroacetyl and N-dihydrocinnamoyl groups mimic a phenylalanine moiety and thus bind the sulfinamide to the active site. Molecular modeling further suggests that enantioselectivity stems from a favorable hydrophobic interaction between the aryl group of the fast-reacting (R)-arylsulfinamide and the S1' leaving group pocket in subtilisin E.  相似文献   

16.
A novel and practical asymmetric synthesis of chiral glycidic acid derivatives involving methyl (2R,3S)-3-(4-methoxyphenyl)glycidate ((2R,3S)-2a), a key intermediate for diltiazem hydrochloride (1), was developed. Treatment of methyl (E)-4-methoxycinnamate ((E)-3a) with chiral dioxirane, generated in situ from a catalytic amount (5 mol %) of an 11-membered C(2)-symmetric binaphthyl ketone (R)-7a, provided (2R,3S)-2a in 92% yield and 80% ee. Other cinnamic acid esters and amides were epoxidized by the use of the same procedure to give the corresponding chiral glycidic acid derivatives with up to 95% yield and 92% ee. Higher enantioselectivities in the asymmetric epoxidation of (E)-cinnamates than that of (E)-stilbene derivatives were observed and were proposed to be attributed to a dipole-dipole repulsion between oxygen atoms of an ester group in the cinnamates and those of the lactone moieties in the binaphthyl dioxirane.  相似文献   

17.
刘启宾  周永贵 《催化学报》2007,28(10):847-849
从(1R,2S)-环己烷吡啶醇出发,合成了具有不同轴手性的反式环己烷骨架铱络合物,并将其应用于3-羟甲基-2H-苯并吡喃的不对称氢化中.结果表明,当以Ir-8为催化剂,二氯甲烷为溶剂,氢气压力5MPa,室温反应16h时,可以取得极好的反应活性,产物最高对映选择性可达94%.  相似文献   

18.
Sun Y  Wan X  Wang J  Meng Q  Zhang H  Jiang L  Zhang Z 《Organic letters》2005,7(24):5425-5427
[reaction: see text] An efficient asymmetric hydrogenation of alpha-ketoesters is reported with use of a catalyst prepared from [Ru((S)-3)(benzene)Cl]Cl and CeCl(3).7H(2)O. Alpha-hydroxy esters are obtained in up to 96% ee. The addition of CeCl(3).7H(2)O not only improves the enantioselectivity, but also enhances the stability of the catalyst. As a result, the hydrogenation of methyl benzoylformate affords the product with 92% ee with a substrate/catalyst ratio of 10 000. Hydrolysis of 2 provides the final compound with 83% yield at 99% ee after a single recrystallization from 1,2-dichloroethylene.  相似文献   

19.
Chiral eta6-arene/N-tosylethylenediamine-Ru(II) complexes, known as excellent catalysts for asymmetric transfer hydrogenation of aromatic ketones in basic 2-propanol, can be used for asymmetric hydrogenation using H2 gas. Active catalysts are generated from RuCl[(S,S)-TsNCH(C6H5)CH(C6H5)NH2](eta6-p-cymene) in methanol, but not 2-propanol, or by combination of Ru[(S,S)-TsNCH(C6H5)CH(C6H5)NH](eta6-p-cymene) and CF3SO3H or other non-nucleophilic acids. This method allows, for the first time, asymmetric hydrogenation of simple ketones under acidic conditions. Hydrogenation of base-sensitive 4-chromanone and its derivatives with the S,S catalyst proceeds in methanol with a substrate-to-catalyst molar ratio of 1000-3000 (10 atm) to 7000 (100 atm), giving (S)-4-chromanols with 97% ee quantitatively. The reaction can be achieved even on a 2.4 kg scale. The mechanistic rationale for the catalytic efficiency is presented.  相似文献   

20.
[reaction: see text] The asymmetric reduction of N-aryl imines to yield chiral amines with enantiomeric excesses above 90% was achieved. Ethylenebis(eta5-tetrahydroindenyl)titanium difluoride ((EBTHI)TiF2, 1) was employed as the precatalyst with polymethylhydrosiloxane (PMHS) as the stoichiometric reducing agent. A variety of N-aryl imines derived from nonaromatic ketones were reduced with high ee.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号