首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Field-effect mobility of electrons as high as 0.1 cm2/(V s) is observed in n-channel thin film transistors fabricated from a solution spin-coated conjugated ladder polymer, poly(benzobisimidazobenzophenanthroline) (BBL), under ambient air conditions. This is the highest electron mobility observed to date in a conjugated polymer semiconductor. Comparative studies of n-channel thin film transistors made from a structurally similar nonladder conjugated polymer BBB gave an electron mobility of 10-6 cm2/(V s). These results demonstrate that electron transport can be as facile as hole transport in conjugated polymer semiconductors and that ladder architecture of a conjugated polymer can substantially enhance charge carrier mobility.  相似文献   

2.
3.
Novel thiazole oligomers and thiazole/thiophene co-oligomers with trifluoromethylphenyl groups were developed as n-type semiconductors for OFETs. They showed excellent n-type performances with high electron mobilities. A 5,5'-bithiazole with trifluoromethylphenyl groups forms a closely packed two-dimensional columnar structure leading to a high performance n-type FET. The electron mobility was enhanced to 1.83 cm2/Vs on the OTS-treated substrate.  相似文献   

4.
Heteroaromatic oligomer 5,7,12,14-tetrachloro-6,13-diazapentacene (TCDAP) was characterized and assessed as n-channel material in field-effect transistor applications. A single-crystal transistor based on TCDAP as the channel material exhibits a very high electron mobility of 3.39 cm(2) V(-1) s(-1) and an on/off ratio of ~1.08 × 10(4) respectively.  相似文献   

5.
A magnetic field has been utilized for producing highly oriented films of a substituted hexabenzocoronene (HBC). Optical microscopy studies revealed large area HBC monodomains that covered the entire film, while wide-angle X-ray measurements showed that the HBC molecules are aligned with their planes along the applied field. On the basis of this method, solution-processed field-effect transistors (FET) have been constructed with charge carrier mobilities of up to 10(-3) cm2/V.s, which are significantly enhanced with respect to the unaligned material. Exceptionally high mobility anisotropies of 25-75 for current flow parallel and perpendicular to the alignment direction have been measured as a function of the channel length. Atomic force microscopy performed on the FET structures reveals fibril superstructures that are oriented perpendicularly to the magnetic field direction, consisting of molecular columns with a slippage angle of 40 degrees between the molecules. For channel lengths larger than 2.5 mum, the fibrils are smaller than the electrode spacing, which adversely affects the device performance.  相似文献   

6.
The first n-type FET based on TTF derivatives was prepared. TTF derivatives with halogeno-substituted quinoxaline rings showed excellent n- or p-type performances with high carrier mobilities. Introduction of halogen groups determined the FET polarity by controlling the HOMO and LUMO levels of the molecules. The pi-stacking structures were observed in the single crystals of tetrahalogeno-TTFs.  相似文献   

7.
New carbonyl-functionalized quaterthiophenes, 5,5' '-diperfluorophenylcarbonyl-2,2':5',2' ':5' ',2' '-quaterthiophene [DFCO-4T], 5,5' '-diphenyl-2,2':5',2' ':5' ',2' '-quaterthiophene [DPCO-4T], and a polymer having the same basic motif as DFCO-4T, poly{1,4-bis[(3'-n-octyl-2,2'-dithiophene)carbonyl]-2,3,5,6-tetrafluorobenzene} [P(COFCO-4T)], have been synthesized, characterized, and the crystal structures of the molecules determined. Field-effect transistors fabricated with vapor-deposited and solution-cast films of DFCO-4T exhibit very high Ion:Ioff current ratios (up to 108) and electron mobilities up to approximately 0.51 and approximately 0.25 cm2.V-1.s-1, respectively. Solution-cast blends of P(COFCO-4T) and DFCO-4T (1:1 weight ratio) exhibit an electron mobility of approximately 0.01 cm2.V-1.s-1 (Ion:Ioff = 104).  相似文献   

8.
Recently, it was reported that crystals of the organic material dithiophene-tetrathiafulvalene (DT-TTF) have a high field-effect charge carrier mobility of 1.4 cm(2)/(V x s). These crystals were formed by a simple drop-casting method, making this material interesting to investigate for possible applications in low-cost electronics. Here, organic single-crystal field-effect transistors based on materials related to DT-TTF are presented and a clear correlation between the crystal structure and the electrical characteristics is observed. The observed relationship between the mobilities in the different crystal structures is strongly corroborated by calculations of both the molecular reorganization energies and the maximum intermolecular transfer integrals. The most suitable materials described here exhibit mobilities that are among the highest reported for organic field-effect transistors and that are the highest reported for solution-processed materials.  相似文献   

9.
Proper functionalization of indolo[3,2-b]carbazole led to a new class of high-performance organic semiconductors suitable for organic thin-film transistor (OTFT) applications. While 5,11-diaryl-substituted indolo[3,2-b]carbazoles without long alkyl side chains provided amorphous thin films upon vacuum deposition, those with sufficiently long alkyl side chains such as 5,11-bis(4-octylphenyl)indolo[3,2-b]carbazole self-organized readily into highly crystalline layered structures under similar conditions. OTFTs using channel semiconductors of this nature exhibited excellent field-effect properties, with mobility up to 0.12 cm(2) V(-1) s(-1) and current on/off ratio to 10(7). As this class of organic semiconductors has relatively low HOMO levels and large band gaps, they also displayed good environmental stability even with prolonged exposure to amber light, an appealing characteristic for OTFT applications.  相似文献   

10.
Ultrahigh mobility in polymer field-effect transistors by design   总被引:1,自引:0,他引:1  
In this article, the design paradigm involving molecular weight, alkyl substituents, and donor-acceptor interaction for the poly[2,6-(4,4-bis-alkyl-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (cyclopentadithiophene-benzothiadiazole) donor-acceptor copolymer (CDT-BTZ) toward field-effect transistors (FETs) with ultrahigh mobilities is presented and discussed. It is shown that the molecular weight plays a key role in improving hole mobilities, reaching an exceptionally high value of up to 3.3 cm(2) V(-1) s(-1). Possible explanations for this observation is highlighted in conjunction with thin film morphology and crystallinity. Hereby, it is found that the former does not change, whereas, at the same time, crystallinity improved with ever growing molecular weight. Furthermore, other important structural design factors such as alkyl chain substituents and donor-acceptor interaction between the polymer backbones potentially govern intermolecular stacking distances crucial for charge transport and hence for device performance. In this aspect, for the first time we attempt to shed light onto donor-acceptor interactions between neighboring polymer chains with the help of solid state nuclear magnetic resonance (NMR). On the basis of our results, polymer design principles are inferred that might be of relevance for prospective semiconductors exhibiting hole mobilities even exceeding 3 cm(2) V(-1) s(-1).  相似文献   

11.
Conductive and emissive: organic transistors made from a simple styrylanthracene derivative have high charge mobility and high luminescence quantum yields. These properties are attributed to the lack of singlet fission, and challenge the idea that the efficient π interactions required for high mobility always lead to quenching of emission. The transistors emit blue electroluminescence and are stable during operation and storage.  相似文献   

12.
For the synthesis of an ortho-dithienylpyrene, a K-region bromination of pyrene was developed which enabled the first reported, non-statistical asymmetric functionalization of pyrene at the 4, 5, 9 and 10 positions. Crystal structures, optical and electronic properties and FET characteristics have been investigated.  相似文献   

13.
Low‐operating voltage, high mobility, and stable organic field‐effect transistors (OFETs) using polymeric dielectrics such as pristine poly(4‐vinyl phenol) (PVP) and poly(methyl methacrylate) (PMMA), dissolved in solvents of high dipole moment, have been achieved. High dipole moment solvents such as propylene carbonate and dimethyl sulfoxide used for dissolving the polymer dielectric enhance the charge carrier mobilities by three orders of magnitude in pentacene OFETs compared with low dipole moment solvents. Fast switching circuits with patterned gate PVP‐based pentacene OFETs demonstrated a switching frequency of 75 kHz at input voltages of |5 V|. The frequency response of the OFETs is attributed to a high degree of dipolar‐order in dielectric films obtained from high‐polarity solvents and the resulting energetically ordered landscape for transport. Remarkably, these pentacene‐based OFETs exhibited high stability under bias stress and in air with negligible shifts in the threshold voltage. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1533–1542  相似文献   

14.
Four different perylene side‐chain semiconductor polymers, synthesized by a combination of “click” chemistry and nitroxide‐mediated radical polymerization, are compared in terms of their optical, electrochemical, and charge transport properties. The nature of the solubilizing side chains and the chromophoric π‐conjugation system of the pendant perylene moieties are systematically changed. Two poly(perylene bisimide)s with hydrophobic (PPBI 1) and hydrophilic substituents (PPBI 2) are compared with poly(perylene diester benzimidazole) (PPDEB) and poly(perylene diester imide) (PPDEI). Optical properties are investigated by UV/vis and photoluminescence spectroscopy, and charge transport is studied by organic field effect transistor and space‐charge‐limited current measurements. Cyclic voltammetry is used to estimate highest occupied molecular orbital and lowest unoccupied molecular orbital levels. The extended π‐conjugation system of PPDEB leads to a broader absorption in the visible region when compared with PPDEI and the PPBIs. Although absorption properties of PPDEB could be considerably improved by varying the perylene core, the charge carrier mobility could be drastically improved by tuning the substituents. Very high electron mobilities of 1 × 10?2 cm2 V?1 s?1 were achieved for PPBI 2 carrying oligoethyleneglycol substituents. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1480–1486  相似文献   

15.
A cyclic ethylene linked triphenylamine dimer formed highly crystalline thin film via vapor deposition. Meanwhile, the corresponding linear molecule only resulted in amorphous films under the same condition. The performance as FET semiconductor also improved significantly when the molecular structure derived from linear to cyclic type. The cyclic molecule displayed mobilities in excess of 10-2 cm2 V-1 s-1 and high on/off ratios up to 107.  相似文献   

16.
Aromatic ring-condensed TTF derivatives exhibited excellent p-type FET performances in thin films. Introduction of fused benzene and pyrazine rings to the TTF skeleton was effective to enhance the intermolecular interactions and stability to oxygen. Ordered molecular alignment was confirmed by XRD studies. A pi-stacking structure was observed in the single crystal of diquinoxalinoTTF.  相似文献   

17.
We here report naphtho[2,1-b:6,5-b']difuran derivatives as new p-type semiconductors that achieve hole mobilities of up to 3.6 cm(2) V(-1) s(-1) along with high I(on)/I(off) ratios in solution-processed single-crystal organic field-effect transistors. These features originate from the dense crystal packing and the resulting large intermolecular π-orbital overlap as well as from the small reorganization energy, all of which originate from the small radius of an oxygen atom.  相似文献   

18.
Anthradithiophene was incorporated in a polymer structure by extending its conjugation from the 5,11-positions, through in situ desilylation followed by acetylenic coupling with a dibromo-monomer. The resulting polymer showed largely redshifted order in a thin film as well as order in thin film, forming lamellar structures out of the substrate plane. As a result, it exhibits field-effect hole mobilities, on the order of 0.1 cm(2) V(-1) s(-1), a ten to hundred-fold improvement as compared to previous acene-containing polymers.  相似文献   

19.
Yu  Xixia  Zheng  Lei  Li  Jinfeng  Wang  Lu  Han  Jiangli  Chen  Huayi  Zhang  Xiaotao  Hu  Wenping 《中国科学:化学(英文版)》2019,62(2):251-255
An asymmetric anthracene derivative(4-HDPA) was designed and synthesized. With the optimization of proper scenario of fabrication process, top-contact thin film devices based on 4-HDPA exhibit mobility as high as 3.59 cm~2 V~(–1) s~(–1), while its singlecrystal devices exhibit mobility as high as 5.12 cm~2 V~(–1) s~(–1), which is higher than the symmetrical counterpart of 4-HDPA in both single-crystal and thin film devices.  相似文献   

20.
A family of red light-emitting star-shaped porphyrins with four monodisperse conjugated oligofluorene arms was prepared by using two key reactions: Lindsey condensation and Suzuki-Miyaura cross coupling reactions. All porphyrins exhibit high quantum yields (about 0.22) and good solubility in common organic solvents, and form high-quality solid films. Optical studies showed that the star-shaped oligomers could absorb blue light and emit saturated red light via efficient energy transfer from the fluorene segments to the porphyrin core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号