首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, various surfactants were added to control the gelation time of silk fibroin (SF) aqueous solution. The gelation behaviors of SF aqueous solution in the presence of surfactant were investigated with attenuated total reflectance infrared, SEM, and a viscometer. When surfactants other than chitooligosaccharide were added into an SF aqueous solution, the gelation time of the solution was decreased under the fixed conditions. Particularly, anionic surfactant was found to be more effective than non-ionic and cationic surfactants in accelerating the gelation of SF. In addition, the conformational changes of SF hydrogel with or without surfactant were investigated in a time-resolved manner using infrared spectroscopy. Conformational transitions of SF nanofibers from random coil to β-sheet forms were strongly dependent on the inherent properties of surfactant, and on the different interactions between surfactant and SF molecules in aqueous solution. This approach to controlling the gelation of SF aqueous solution by the surfactant, and to monitoring their conformational changes on a real-time scale, may be critical in the design and tailoring of SF hydrogels useful for biomedical applications.  相似文献   

2.
Viscosities of microcrystalline cellulose + 1-butyl-3-methylimidazolium acetate ([bmIm][Ac]) solutions (0.6–1.2 wt%) in contact with CO2 were measured at 312 K with a resonant vibrational viscometer. At 4 MPa and 312 K, the CO2 could reduce the viscosity of 1.2 wt% cellulose + [bmIm][Ac] solution by about 80 %, whereas N2 at the same conditions gave less than a 10 % reduction in viscosity. The viscosity-averaged degree of polymerization and IR spectrum showed that cellulose did not decompose during experiments and that [bmIm][Ac] acted as a non-derivatizing solvent during the dissolution and viscosity reduction process. Further, although CO2 does react with [bmIm][Ac] to form 1-butyl-3-methylimidazolium-2-carboxylate, the reaction seems to be reversible and it does not affect the cellulose. Thus, [bmIm][Ac] with CO2 provides an effective solvent for cellulose and the solvent system can probably be recycled or reused.  相似文献   

3.
《Fluid Phase Equilibria》2004,218(1):123-129
The solubility of 1-butyl-3-methylimidazolium chloride [C4mim][Cl] in alcohols {ethanol, 1-butanol, 1-hexanol, 1-octanol, 1-decanol, 1-dodecanol, 2-butanol, 2-methyl-2-propanol (tert-butanol)} has been measured by a dynamic method from 270 K to the melting point of the ionic liquid or to the boiling point of the solvent. The melting point, enthalpy of fusion, and the temperature of the glass phase transition were determined by differential scanning calorimetry.The solubility data were correlated by means of the Wilson, UNIQUAC ASM and modified NRTL1 equations utilizing parameters derived from the solid–liquid equilibrium data. The root-mean-square deviations of the solubility temperatures for all calculated data were higher than 0.9 K and depended on the particular equation used.  相似文献   

4.
The results of steady-state and time-resolved fluorescence studies of the sol-gel transition initiated by acidic hydrolysis of silane sols of pH 1.8–5.9 are presented. The gelation process was carried out in an oxygen-free atmosphere using pyrene as a fluorescence probe at concentrations of 1×10 -5–1×10 -2 M. The silica gels were prepared from sols consisting of tetraethylorthosilicate, ethanol and water in a molar ratio of 1:6:6. The steady-state spectra recorded during gelation allowed the polarity to be determined in the microenvironment of the probe for different pH and pyrene concentration. The investigation of the kinetics of fluorescence decay permitted us to discuss the formation of pyrene aggregates due to variations occurring in the gel net.  相似文献   

5.
Silica–titania mixed oxide were prepared by sol–gel method from tetraethylorthosilicate and titanium (IV) isopropoxide as precursors in the presence of room temperature ionic liquid (RTIL), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [C4MIm][NTf2]. The effects of [C4MIm][NTf2] on the structural and textural characteristics of silica–titania matrix are investigated in this paper. The materials obtained were well characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis X-ray powder diffraction (XRPD), field emission scanning electron microscope (FESEM) and N2 adsorption–desorption analysis. It is believed that the [C4MIm][NTf2] plays an important role as a template and the high surface area of the samples is thought to mainly attribute to the formation of microporous in the reaction. The synthesized materials showed the presence of C–N groups in the FTIR spectrum which indicates the presence of RTIL in the silica–titania matrix. XRPD, FESEM and N2 adsorption–desorption analysis results indicated that the composite materials possessed good microporous character. The subsequent material displayed average pore diameter of 1.70–2.12 nm, pore volume of 0.08–0.19 cm3/g and BET surface area of 191–386 m2/g. Increasing the content of RTIL resulted in an increase of the average pore diameter of the silica–titania gel.  相似文献   

6.
Silica particles were generated and grown in situ by sol–gel method into rubber blends comprised of natural rubber (NR) and acrylonitrile butadiene rubber (NBR) at various blend ratios. Silica formed into rubber matrix was amorphous in nature. Amount of in situ silica increased with increase in natural rubber proportion in the blends during the sol–gel process. Morphology studies showed that the generated in situ silica were nanoparticles of different shapes and sizes mostly grown into the NR phase of the blends. In situ silica filled NR/NBR blend composites showed improvement in the mechanical and dynamic mechanical behaviors in comparison to those of the unfilled and externally filled NR/NBR blend composites. For the NR/NBR blend at 40/60 composition, in particular, the improvement was appreciable where size and dispersion of the silica particles into the rubber matrix were found to be more uniform. Dynamic mechanical analysis revealed a strong rubber–in situ silica interaction as indicated by a positive shift of the glass transition temperature of both the rubber phases in the blends.  相似文献   

7.
Herein, addition reaction occurred between glycidol and partially hydrolyzed Ti4+ complexes provides a opportunity to obtain dry anatase nanopowder with high redispersity in water. This property is considered to be originated from the two OH groups located in the two ends of glycidol resulted chlorinated propandiol molecules. In aqueous solution, the two OH groups are respectively connected with particle surface and external free water by the formation of hydrogen bonds, resulting in high water redispersity of nanoparticles. Due to the much less amount of chlorinated propandiol molecules than adsorbed molecule water on particle, the wide space between organic molecules facilitates the mutual physical surface touch of individual particles to form hydrogen bond between them. A novel property is then obtained for surface modified titania nanoparticles, which is the gelation of redispered nanoparticles in aqueous solution.  相似文献   

8.
9.
Journal of Solid State Electrochemistry - Electrochemical double-layer capacitors (EDLCs) have recently received an enormous attraction due to their ability to produce higher power density without...  相似文献   

10.
11.
Here, we have measured the glass transition temperature (Tg) of the ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate–H2O mixed solutions as a function of H2O concentration (x mol% H2O). The glass-forming composition region was also determined. Contrary to the results of the quaternary ammonium type of ionic liquid, N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate–H2O mixed solutions, we did not observed the multiple glass transition behaviour. We also measured the glassy Raman spectra of the solutions at T = 77 K. We find that the “nearly free” hydrogen bonded Raman band of water molecules in the aqueous [bmim][BF4] solution exists up to around x = 60 mol% H2O, even at T = 77 K.  相似文献   

12.
13.
Although the use of silica sol–gels for protein entrapment has been studied extensively our understanding of the interactions between the immobilization matrix and the entrapped biomolecules is still relatively poor. Non-invasive in situ spectroscopic characterization is a promising approach to gain a better understanding of the fundamentals governing sol–gel immobilization of biomolecules. This work describes the application of Fourier transform infrared (FTIR) microscopy to determine the influence of modifying the sol–gel hydrophobicity, by varying the content of the organically modified precursor propyltrimethoxysilane (PTMS), on the distribution and structure of three model proteins (lysozyme [EC 3.2.1.17], lipase [EC 3.1.1.3] and bovine serum albumin (BSA)) in silica sol–gel thin films. FTIR analysis of the overall immobilized protein positional distribution showed a Gaussian type distribution. FTIR microscopic mapping however, revealed that the spatial distribution of proteins was heterogeneous in the sol–gel thin films. When this positional information provided by FTIR microscopy was taken into account, areas of high protein concentration (clusters) were found and were not found to be homogeneously distributed. The shape of these clusters was found to depend on the type of protein entrapped, and in some cases on the composition of the sol–gel. Positional analysis of the distribution of the organically modified precursor PTMS in relation to the protein distribution was also conducted. The localized concentration of PTMS was found to positively correlate with the protein concentration in the case of lipase and negatively correlate in the case of lysozyme and BSA. These results indicate that lysozyme and BSA concentration was higher in areas of low hydrophobicity, while lipase concentration was higher in areas of high hydrophobicity within the sol–gel. Additionally, as determined by peak shape analysis of the amide I peak a higher PTMS content appeared to conserve protein structure in high concentration clusters for lipase. In contrast, lysozyme and BSA, appeared to retain their structure in high concentration clusters better at lower PTMS contents. A hypothesis speculating on the nature of the hydrophobic/hydrophilic interactions between the proteins and the sol–gel domains as the reason for these differences is presented.  相似文献   

14.
1 INTRODUCTION Ionic compounds generally have high melting points and always exist in solid state since they are main- tained by electrovalent bonds. Ionic Liquids (ILs), which are liquids at or near ambient temperature, have been a class of ionic compounds extensively studied experimentally and theoretically in recent years[1, 2]. ILs consist exclusively of anions and ca- tions and do not contain any neutral molecule. They have many attractive properties, such as low vapor pressure, no…  相似文献   

15.
Journal of Thermal Analysis and Calorimetry - In the literature data, several papers reported the synthesis by various chemical or physical methods of the SrCu2O2 (SCO) having possible applications...  相似文献   

16.
In this thesis, we will elaborate on the sol–gel process during the preparation of monolithic copper-based aerogel. The microstructure of the copper-based aerogel appears to be various due to the different amounts of raw materials, such as polyacrylic acid, propene oxide, deionized water (H2O) and copper(II) chloride (CuCl2) in the sol–gel process. The proper molar ratios between these reactants play a crucial factor in mediating the morphology of the aerogel. The aerogels are characterized by field emission scanning electron microscopy, high-resolution transmission electron microscopy and Brunauer–Emmett–Teller methods. The combined results indicate that the copper-based aerogel shows a typical three-dimensional porous structure with a large surface areas about 568 m2/g, and the skeleton structure of the aerogel is composed of a large number of primary particles with the size about a few nanometers.  相似文献   

17.
The objective of this work was to delineate the effect of hydrophilic and hydrophobic polymeric additives on sol–gel transition and release profile of timolol maleate (TM) from poly (ethylene glycol)–poly (ε-caprolactone)–poly (ethylene glycol) (PEG–PCL–PEG)-based thermosensitive hydrogel. Polycaprolactone (hydrophobic additive) and polyvinyl alcohol (PVA) (hydrophilic additive) reduced critical gel concentration of PEG–PCL–PEG triblock polymer. The effect of PCL on sol–gel transition was more pronounced than PVA. However, with PCL no statistically significant difference in release profile was observed. The effect of PVA on release profile was more pronounced, which reduced the cumulative percentage release of TM from 86.4 ± 0.8% to 73.7 ± 1.8% over 316 h. Moreover, cytotoxicity of the hydrogel was also investigated utilizing rabbit primary corneal epithelial culture cells. No significant cytotoxicity of hydrogel alone or in presence of additives was observed. So, polymeric additive strategy serves as a valuable tool for optimizing TM release kinetics from PEG–PCL–PEG hydrogel matrix.  相似文献   

18.
Continuous mullite ceramic fibers were fabricated by a sol–gel dry spinning technique. The sol was prepared from an aqueous solution of aluminum nitrate (AN), aluminum isopropoxide (AIP) and tetraethylorthosilicate (TEOS). The sol–gel transition was investigated by measuring the volume, the solid content, the viscosity and the rheological properties of the solution. Shear viscosity η of the mullite sol varied dynamically with concentrating time and temperature. Combine size analysis of sol particles and TEM analysis on this basis, the growth character of sol particles agglomeration and its structural evolution were discussed. By adjusting the temperature, the gelling degree could stabilize at a certain value and the sol–gel transition could be transferred to the spinning line. Continuous fibers were spun from such sols immediately before gelling in a laboratory dry spinning apparatus. The spinneret contained thirty circular holes, each having a diameter of 0.2 mm. The temperature inside the spinning channel was 100–120 °C, the winding speed was 100–300 m/min. Sintering of the precursor fibers at 1,100 °C yields crack-free mullite ceramic fibers.  相似文献   

19.
Modifications to the refractive indices of meso-structured organic–inorganic films caused by variations in the mole fraction of precursors in ethanolic solutions were investigated. The refractive indices were dependent on the mole fraction of C16TMS (hexadecyltrimethoxysilane) and of the C16TMS/TMOS (tetramethoxysilane) (1/1) mixture in ethanol. The dependency was determined to be nonlinear, and the phenomenon was attributed to self-assembly caused by the long alkyl groups (C16) on the C16TMS. Changes in the maximum decreasing rate of dn/dx values [(dn/dx)max—for dn/dx estimation, the curves from Fig. 1 were associated with a polynomial; using a dedicated program, dn/dx was calculated; maximum values of dn/dx were taken into account and were included in Table 1)] were used to distinguish the behavior of alcoholic precursor mixtures. In the case of using pyrene as a fluorescent probe, the ratio between two peaks from the pyrene emission spectra (I1/I3) strongly decreased as hydrophobic micro-surroundings formed due to the self-assembly process. The UV–VIS spectra of a cationic dye solution, R6G, was studied because dilute solutions of the dye in equilibrium form measurable ratios of dimers and monomers. The absorbance was modified as micro-surroundings with different polarities were formed. These three methods demonstrated that nano-structuration was present prior to the occurrence of the sol–gel process. The combination of C16TMS with other alkyltrialkoxysilane precursors having hydrocarbon chain lengths between C1 and C8 provided further evidence for a nonlinear dependence of the refractive indice and fluorescence spectra of pyrene. The properties of the final hybrids obtained by the sol–gel process were significantly affected by the precursor hydrocarbon chain lengths. DSC, XRD and FTIR measurements were used to show the plasticizing phenomena of C16 as other alkyltrialkoxysilanes (i.e., C1–C8) were added.
Fig. 1
Variation of the refractive index with the mole fraction of the precursor mixtures  相似文献   

20.
With the use of viscometry, the cloud-point method, polarization microscopy, the turbidity-spectrum method, and a polarization photoelectric apparatus, the relaxation pattern of the rheological behaviors, phase transitions, and structures of the systems hydroxypropyl cellulose–ethanol and hydroxypropyl cellulose–dimethyl sulfoxide are studied. The regions of existence of isotropic and anisotropic phases and the concentration dependence of the sizes of supramolecular particles are determined. It is found that a magnetic field increases the viscosities of solutions. The concentration dependences of viscosity and particle size are described by curves with maxima.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号