首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Various types of crystalline cellulose consisting of group I (cell I, IIII, IVI) and group II (cell II, IIIII, IVII) prepared from cotton linter were adjusted for their degree of polymerization (DP) as starting materials. These celluloses were then treated by semi-flow hot-compressed water (HCW) at 230–270 °C/10 MPa/2–15 min to study their decomposition behaviors. The treatments performed resulted in residues of celluloses and water-soluble (WS) portions. Consequently, the crystallinity of the residues was found to remain the same, but the DP was reduced as the temperature increased. Additionally, X-ray diffractometry and Fourier transform-infrared analyses demonstrated that crystallographic changes occurred for residues of cell IIII, IVI and IIIII. Despite these changes, the overall results of the residues showed that group I has higher resistance to decomposing than group II. As for the WS portions, the yields of the hydrolyzed and degraded products were higher in group II than group I, indicating that group II is less resistant to decomposition by HCW treatment. Results for both the residues and WS portions are in agreement with each other, showing that the degree of difficulty of decomposition was higher in group I than group II. Therefore, the decomposition behaviors of the celluloses are due to differences in the crystalline forms.  相似文献   

2.
Sum-frequency-generation (SFG) vibration spectroscopy is a technique only sensitive to functional groups arranged without centrosymmetry. For crystalline cellulose, SFG can detect the C6H2 and intra-chain hydrogen-bonded OH groups in the crystal. The geometries of these groups are sensitive to the hydrogen bonding network that stabilizes each cellulose polymorph. Therefore, SFG can distinguish cellulose polymorphs (Iβ, II, IIII and IIIII) which have different conformations of the exocyclic hydroxymethylene group or directionalities of glucan chains. The C6H2 asymmetric stretching peaks at 2,944 cm?1 for cellulose Iβ and 2,960 cm?1 for cellulose II, IIII and IIIII corresponds to the trans-gauche (tg) and gauche-trans (gt) conformation, respectively. The SFG intensity of the stretch peak of intra-chain hydrogen-bonded O–H group implies that the chain arrangement in cellulose crystal is parallel in Iβ and IIII, and antiparallel in II and IIIII.  相似文献   

3.
In hot-water molecular dynamics simulation at 370 K, four cellulose IIII crystal models, with different lattice planes and dimensions, exhibited partial crystalline transformations of (1 ?1 0) chain sheets, in which hydroxymethyl groups were irreversibly rotated from gt into tg conformations, accompanied by hydrogen-bond exchange from the original O3–O6 to cellulose-I-like O2–O6 bonds. The final hydrogen-bond exchange ratio was about 95 % for some of the crystal models after 50 ns simulation. The corrugated (1 ?1 0) chain sheet was converted to a cellulose-I-like flat chain sheet with a slightly right-handed twist. The 3D structures of the three types of isolated chain sheet models were optimized using density functional theory calculations to compare their stabilities without crystal packing forces. The cellulose Iβ (1 0 0) models were more stable than the cellulose IIII (1 ?1 0) models. The optimized structure of cellulose IIII (1 0 0) models deviated largely from the initial sheet form. It was proposed to the crystalline transformation from cellulose IIII to Iβ that conversion of the chain sheet structure first take place, followed by sliding of the chain sheet along the fiber axis.  相似文献   

4.
This paper re-examines our previous molecular dynamics (MD) study on cellulose IIII crystal models with finite dimensions solvated in explicit water molecules. Eight crystal models, differing in a constituent lattice plane and dimensions, were studied. One calculation allowed for O–H and C–H bond stretching, and had a small time step of 0.5 fs. The other calculation adopted non-scaling factors of the 1–4 non-bonded interactions. As in our previous study, in the former MD calculations, six of the eight crystal models exhibited structure conversion with cooperative chain slippages generated by a progressive fiber bend. This converted the initial non-staggered chain packing of cellulose IIII into a near one-quarter staggering and gave the crystal model a triclinic-like configuration. In contrast, in the non-1–4 scaling MD calculations, all of the eight crystal models retained the initial cellulose IIII crystal structure. Another series of non-1–4 scaling MD calculations were performed for the four crystal models containing chains with a degree of polymerization (DP) of 40 at 370 K, which simulated hot water treatment to convert cellulose IIII to Iβ. Some of the hydroxymethyl groups irreversibly rotated from gt into tg conformation. This accompanied exchange of the intrasheet hydrogen bonding scheme along the (1 ?1 0) lattice plane from O2–O6 to O3–O6. The original corrugated (1 ?1 0) chain sheet was partly converted into a cellulose I-like flat chain sheet.  相似文献   

5.
Elastic modulus of the crystalline regions of cellulose polymorphs   总被引:1,自引:0,他引:1  
The elastic modulus El of the crystalline regions of cellulose polymorphs in the direction parallel to the chain axis was measured by x-ray diffraction. The El values of cellulose I, II, IIII, IIIII, and IVI were 138, 88, 87, 58, 75 GPa, respectively. This indicates that the skeletons of these polymorphs are completely different from each other in the mechanical point of view. The crystal transition induces a skeletal contraction accompanied by a change in intramolecular hydrogen bonds, which is considered to result in a drastic change in the El value of the cellulose polymorphs. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
X-ray crystallographic and cross-polarization/magic angle spinning 13C nuclear magnetic resonance techniques have been used to study an ethylenediamine (EDA)-cellulose I complex, a transient structure in the cellulose I to cellulose IIII conversion. The crystal structure (space group P2 1 ; a = 4.546 Å, b = 11.330 Å, c = 10.368 Å and γ = 94.017°) corresponds to a one-chain unit cell with one glucosyl residue in the asymmetric unit, a gt conformation for the hydroxymethyl group, and one EDA molecule per glucosyl residue. Unusually, there are no O–H···O hydrogen bonds between the cellulose chains; the chains are arranged in hydrophobic stacks, stabilized by hydrogen bonds to the amine groups of bridging EDA molecules. This new structure is an example of a complex in which the cellulose chains are isolated from each other, and provides a number of insights into the structural pathway followed during the conversion of cellulose I to cellulose IIII through EDA treatment.  相似文献   

7.
Synchrotron X-ray data have been collected to 1.4 Å resolution at the NE-CAT beam-line at the Advanced Photon Source from fibers of cellulose Iβ and regenerated cellulose II (Fortisan) at ambient temperature and at 100 K in order to understand the effects of low temperature on cellulose more thoroughly. Crystal structures have been determined at each temperature. The unit cell of regenerated cellulose II contracted, with decreasing temperature, by 0.25%, 0.22% and 0.1% along the a, b, and c axes, respectively, whereas that of cellulose Iβ contracted only in the direction of the a axis, by 0.9%. The value of 4.6×10?5 K?1 for the thermal expansion coefficient of cellulose Iβ in the a axis direction can be explained by simple harmonic molecular oscillations and the lack of hydrogen-bonding in this direction. The molecular conformations of each allomorph are essential unchanged by cooling to 100 K. The room temperature crystal structure of regenerated cellulose II is essentially identical to the crystal structure of mercerized cellulose II.  相似文献   

8.
Cellobiose and glucose are valuable products that can be obtained from enzymatic hydrolysis of cellulose. This study discusses changes in the crystalline form of celluloses to enhance the production of sugars and examines the effect on structural properties during enzymatic hydrolysis. Various crystalline celluloses consisting of group I (cell I, cell IIII, cell IVI) and group II (cell II, cell IIIII, cell IVII) of similar DPs were prepared as starting materials. The similar DP values allowed a more direct comparison of the hydrolysis yields. The outcomes were analyzed and evaluated based on the residues and supernatants obtained from the treatment. As a result: (1) action of the cellulase of Trichoderma viride decreased both DP and crystallinity, with greater changes in group II celluloses, (2) the polymorphic interconversion process that occurred for cell IIII, cell IVI, cell IIIII and cell IVII during the treatment was independent of the enzymatic hydrolysis, thus, the hydrolysis behaviors depended on the starting material of the celluloses, and (3) higher sugar production was obtained from cell IIII and group II. Therefore, the hydrolysis behavior of the various crystalline celluloses depended on the particular polymorph of the starting material.  相似文献   

9.
Mononuclear copper(II) complexes of 1,2,4-triazole-based Schiff base macrocyclic hydrazones, III and IV, have been reported. The prepared amorphous complexes have been characterized by spectroscopic methods, electron spray ionization mass spectrometry, and elemental analysis data. Electrochemical studies of the complexes in DMSO show only one quasi-reversible reduction wave at +0.43 V (ΔE = 70 mV) and +0.42 V (ΔE = 310 mV) for III and IV, respectively, which is assigned to the Cu(II) → Cu(I) reduction process. Temperature dependence of magnetic susceptibilities of III and IV has been measured within an interval of 2–290 K. The values of χM at 290 K are 1.72 × 10?3 cm3 mol?1 and 1.71 × 10?3 for III and IV, respectively, which increases continuously upon cooling to 2 K. EPR spectra of III and IV in frozen DMSO and DMF were also reported. The trend g|| > g⊥ > ge suggests the presence of an unpaired electron in the dx2?y2 orbital of the Cu(II) in both complexes. Furthermore, spectral and antimicrobial properties of the prepared complexes were also investigated.  相似文献   

10.

Dispersion and electrostatic interactions both contribute significantly to the tight assembly of macromolecular chains within crystalline polysaccharides. Using dispersion-corrected density functional theory (DFT) calculation, we estimated the elastic tensor of the four crystalline cellulose allomorphs whose crystal structures that are hitherto available, namely, cellulose Iα, Iβ, II, IIII. Comparison between calculations with and without dispersion correction allows quantification of the exact contribution of dispersion to stiffness at molecular level.

  相似文献   

11.
Diffractograms were simulated for model nanocrystals of cellulose Iβ, using numerical summation of radiation scattered from all carbon and oxygen atoms in the nanocrystal. Diffractogram peaks were sometimes displaced by a few degrees from positions calculated by the Bragg equation, as predicted in a published study based on a different mathematical approach. Simulated diffractograms showed 2 or 3 peaks, depending on the cross-sectional size and shape of the model nanocrystal. Some of the 2-peak diffractograms resembled published results for the purported polymorph cellulose IVI, or for cell-wall cellulose, supporting suggestions that cellulose IVI is simply cellulose I fragmented into nanocrystals with relatively small cross-sectional dimensions. A published diffractogram for cellulose IVII could not be simulated with acceptable precision, suggesting that this polymorph might have a crystal structure distinctly different from that of cellulose Iβ.  相似文献   

12.
13.
The structure of microbial cellulose (MC) produced by Acetobacter xylinum was studied in presence of Fluorescent Brightener, Direct Blue 1, 14, 15, 53, Direct Red 28, 75 and 79, as probe. X-ray diffraction pattern of the product showed that it was a crystalline complex of dye and cellulose. The product has the structure in which the monomolecular layer of the dye molecule is included between the cellulose sheets corresponding to the ( $ 1\bar{1}0 $ ) planes of microbial cellulose. As a result of dye inclusion, d-spacing of lower angle plane (100) of products becomes 8.0–8.8 Å instead of 6.1 Å of MC. The d-spacing for the higher angle plane must be (010) plane due to stronger van der Waals forces between the pyranose rings which reduced 5.3 Å space of (110) plane of MC to 3.9–4.5 Å in the product. However, cellulose regenerated from FB, DR28 products was cellulose I and IV, respectively, and that from each DB1, 14, 15, 53, DR75 and 79 products was cellulose II. Solid state 13C NMR and deuteration-IR showed the product was non-crystalline which was contrasted to X-ray results. The regenerated celluloses were cellulose Iβ, IVI and II, respectively. Thus the structure of the product depends on the characteristics of dye which affects the conformation of cellulose at the nascent stage by the direct interaction with cellulose chains. The different regenerated celluloses as well as different fine structure in the same cellulose allomorph were produced depending mainly on number and position of the sulfonate groups in the dye.  相似文献   

14.
Measurements of the thermal expansion coefficients (TECs) of cellulose crystals in the lateral direction are reported. Oriented films of highly crystalline cellulose Iβ and IIII were prepared and then investigated with X‐ray diffraction at specific temperatures from room temperature to 250 °C during the heating process. Cellulose Iβ underwent a transition into the high‐temperature phase with the temperature increasing above 220–230 °C; cellulose IIII was transformed into cellulose Iβ when the sample was heated above 200 °C. Therefore, the TECs of Iβ and IIII below 200 °C were measured. For cellulose Iβ, the TEC of the a axis increased linearly from room temperature at αa = 4.3 × 10?5 °C?1 to 200 °C at αa = 17.0 × 10?5 °C?1, but the TEC of the b axis was constant at αb = 0.5 × 10?5 °C?1. Like cellulose Iβ, cellulose IIII also showed an anisotropic thermal expansion in the lateral direction. The TECs of the a and b axes were αa = 7.6 × 10?5 °C?1 and αb = 0.8 × 10?5 °C?1. The anisotropic thermal expansion behaviors in the lateral direction for Iβ and IIII were closely related to the intermolecular hydrogen‐bonding systems. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1095–1102, 2002  相似文献   

15.
Complexes ZnLCl2 (I) and [CdLCl2] n (IV), where L is chiral bis-pyridine containing fragments of natural monoterpenoide (–)-α-pinene are synthesized. Single crystals of [ZnLCl2]·CH2Cl2 (II), [ZnLCl2i-PrOH (III), and IV compounds are grown. The crystal structures of II and III are composed of mononuclear ZnLCl2 complex molecules and solvate CH2Cl2 and i-PrOH molecules; the coordination polyhedron of the zinc atom Cl2N2 is a distorted tetrahedron. According to the single crystal XRD data, complex IV is a 1D coordination polymer; the coordination core CdN2Cl4 is a distorted octahedron and Cl atoms are bridging ligands. In the structures of II, III, and IV the L molecule functions as a bidentate chelate ligand. In the solid phase, complexes I and IV exhibit photoluminescence in the visible range (λmax 505 nm and 460 nm respectively). The band intensity in the photoluminescence spectra of I and IV complexes considerably exceeds the band intensity in the spectrum of free L.  相似文献   

16.
X-ray powder diffraction is one of the most commonly used methods in cellulose science. This technique is used to identify the cellulose allomorphs, their crystallinity, and the size of their crystallites. In this paper, a novel model is introduced that implicitly takes into account the shape and size of cellulose Iβ crystallites in the interpretation of powder diffractograms. Because of the limited amount of data in cellulose powder patterns, this model focuses on a small number of adjustable parameters. The method hypothesizes that cellulose Iβ crystallites are straight crystalline rods with superelliptical cross-sections. This superellipse is a parametric curve that can, for example, describe various crystallite shapes as rectangles or ellipses. Additionally, preferred orientation along the (0 0 1) crystallographic planes can be modelled using the March–Dollase approach. The simulated background has a semi-empirical form. An initial model comprised cellulose Iβ crystallites and the amorphous background. A second model comprised a biphasic distribution of crystallites and the same amorphous background. In this second model, large cellulose Iβ crystallites coexisted with more slender crystallites, usually less than 20 Å in lateral size. Cellulose IVI nanocrystals were selected as a modeling construct to represent these small and distorted forms of native cellulose. Both models produced simulations in excellent agreement with the experimental measurements.  相似文献   

17.
The crystal structures of the four title clathrate compounds Cd(NH3)2Cd(CN)4 · 2C6H6,I, Cd(NH3)2Cd(CN)4 · 2C6H5NH2,II, Cd(NH2CH2CH2NH2)Cd(CN)4 · 2 C6H5NH2,III, and Cd(C6H5NH2)2Cd(CN)4 · 0.5C6H5NH2,IV, have been analyzed by single crystal X-ray diffraction methods. CompoundI crystallizes in the monoclinic space groupC2/c,a = 12.063(2),b = 12.174(2),c = 14.621(1) Å,β = 90.976(9)°,Z = 4,R = 0.042 for 2388 reflections;II: monoclinic C2/c,a = 12.1951(9),b = 12.078(1),c = 14.6921(7) Å,β = 93.436(5)°,Z = 4,R = 0.039 for 2374 reflections;III: monoclinicCc,a = 11.027(1),b = 12.0767(9),c = 15.837(1) Å,β = 92.059(9)°,Z = 4,R = 0.041 for 2883 reflections; andIV: monoclinicP21/n,a = 15.169(2),b = 16.019(2),c = 8.866(1) Å,β = 95.73(1)°,Z = 4,R = 0.052 for 3612 reflections. The three-dimensionalcatena-[diamminecadmium(II) tetra-μ-cyanocadmate(II)] hosts ofI andII are substantially isostructural to that of the already known Hofmann-Td-type Cd(NH3)2Hg(CN)4 · 2C6H6. The three-dimensional en-Td-typecatena-[catena-μ-ethylenediaminecadmium(II) tetra-μ-cyanocadmate(II)] host ofIII, reinforced by the catena-μ-en linking between the octahedral Cd atoms, accommodates the aniline as the guest with a monoclinic distortion from the tetragonal symmetry of the previously reported en-Td-type benzene clathrate. InIV dual behavior of aniline, one as the unidentate ligand in the three-dimensional host and the other as the guest in the cage-like cavity, has been demonstrated.  相似文献   

18.
The copper(II) compounds [CuL](NO3)2 · H2O (I), [CuL](ClO4)2 · H2O (II), CuLCl2 · 3H2O (III), and CuLBr2 · 4H2O (IV), where L is a chiral dioxatetraazamacrocyclic ligand based on the natural monoterpene (+)-3-carene, have been synthesized. According to IR and EPR spectroscopy, L acts as a tetradentate chelating ligand coordinated through the N atoms of the NH and C=N groups. The NO 3 ? anions in I and the ClO 4 ? anions in II are outer-sphere. I and II have a planar coordination core CuN4, III has a CuN4ClO coordination core, and IV has a CuN4Br2 coordination core.  相似文献   

19.
Four new fluorochromatouranylates, namely, K[UO2(CrO4)F] · 1.5H2O (I), Rb[UO2(CrO4)F] · 1.5H2O (II), Rb[UO2(CrO4)F] · 0.5H2O (III), and Cs[UO2(CrO4)F] · 0.5H2O (IV), have been synthesized, and their crystallographic characteristics have been determined. All the compounds crystallize in monoclinic system, space group P21/c, with the unit cell parameters a = 13.1744(5) Å, b = 9.4598(3) Å, c = 13.0710(4) Å, β = 103.746(1)°, Z = 4, R = 0.0235 (I); a = 13.5902(7) Å, b = 9.5022(4) Å, c = 13.2271(6) Å, β = 102.914(2)°, Z = 4, R = 0.0247 (II); a = 24.7724(8) Å, b = 12.6671(4) Å, c = 9.4464(3) Å, β = 97.661(1)°, Z = 8, R = 0.0448 (III); a = 25.725(1) Å, b = 12.8261(5) Å, c = 9.4929(4) β = 97.208(1)°, Z = 8 (IV). The pairs of compounds I and II and compounds III and IV are isostructural. Crystals of compounds I–III have been subjected to complete X-ray diffraction study. It has been established that the structures of compounds I–III are built of [UO2(CrO4)F] n n? layers, which are parallel to the (100) plane and linked into a framework by alkali-metal cations located between layers, together with water molecules. The effect of topological and geometric isomerism on the structural features of 34 known uranyl compounds of the AT3M2 crystallochemical group, to which the studied compounds I–III also belong, is discussed.  相似文献   

20.
Cellulose‐builder is a user‐friendly program that builds crystalline structures of cellulose of different sizes and geometries. The program generates Cartesian coordinates for all atoms of the specified structure in the Protein Data Bank format, suitable for using as starting configurations in molecular dynamics simulations and other calculations. Crystalline structures of cellulose polymorphs Iα, Iβ, II, and IIII of practically any size are readily constructed which includes parallelepipeds, plant cell wall cellulose elementary fibrils of any length, and monolayers. Periodic boundary conditions along the crystallographic directions are easily imposed. The program also generates atom connectivity file in PSF format, required by well‐known simulation packages such as NAMD, CHARMM, and others. Cellulose‐builder is based on the Bash programming language and should run on practically any Unix‐like platform, demands very modest hardware, and is freely available for download from ftp://ftp.iqm.unicamp.br/pub/cellulose‐builder. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号