首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Let \(\chi _0^n = \left\{ {X_t } \right\}_0^n \) be a martingale such that 0≦Xi≦1;i=0, …,n. For 0≦p≦1 denote by ? p n the set of all such martingales satisfying alsoE(X0)=p. Thevariation of a martingale χ 0 n is denoted byV 0 n and defined by \(V(\chi _0^n ) = E\left( {\sum {_{l = 0}^{n - 1} } \left| {X_{l + 1} - X_l } \right|} \right)\) . It is proved that $$\mathop {\lim }\limits_{n \to \infty } \left\{ {\mathop {Sup}\limits_{x_0^n \in \mathcal{M}_p^n } \left[ {\frac{1}{{\sqrt n }}V(\chi _0^n )} \right]} \right\} = \phi (p)$$ , where ?(p) is the well known normal density evaluated at itsp-quantile, i.e. $$\phi (p) = \frac{1}{{\sqrt {2\pi } }}\exp ( - \frac{1}{2}\chi _p^2 ) where \int_{ - \alpha }^{x_p } {\frac{1}{{\sqrt {2\pi } }}\exp ( - \frac{1}{2}\chi ^2 )} dx = p$$ . A sequence of martingales χ 0 n ,n=1,2, … is constructed so as to satisfy \(\lim _{n \to \infty } (1/\sqrt n )V(\chi _0^n ) = \phi (p)\) .  相似文献   

2.
Let {X k,i ; i ≥ 1, k ≥ 1} be a double array of nondegenerate i.i.d. random variables and let {p n ; n ≥ 1} be a sequence of positive integers such that n/p n is bounded away from 0 and ∞. In this paper we give the necessary and sufficient conditions for the asymptotic distribution of the largest entry ${L_{n}={\rm max}_{1\leq i < j\leq p_{n}}|\hat{\rho}^{(n)}_{i,j}|}$ of the sample correlation matrix ${{\bf {\Gamma}}_{n}=(\hat{\rho}_{i,j}^{(n)})_{1\leq i,j\leq p_{n}}}$ where ${\hat{\rho}^{(n)}_{i,j}}$ denotes the Pearson correlation coefficient between (X 1,i , ..., X n,i )′ and (X 1,j ,...,X n,j )′. Write ${F(x)= \mathbb{P}(|X_{1,1}|\leq x), x\geq0}$ , ${W_{c,n}={\rm max}_{1\leq i < j\leq p_{n}}|\sum_{k=1}^{n}(X_{k,i}-c)(X_{k,j}-c)|}$ , and ${W_{n}=W_{0,n},n\geq1,c\in(-\infty,\infty)}$ . Under the assumption that ${\mathbb{E}|X_{1,1}|^{2+\delta} < \infty}$ for some δ > 0, we show that the following six statements are equivalent: $$ {\bf (i)} \quad \lim_{n \to \infty} n^{2}\int\limits_{(n \log n)^{1/4}}^{\infty}\left( F^{n-1}(x) - F^{n-1}\left(\frac{\sqrt{n \log n}}{x}\right) \right) dF(x) = 0,$$ $$ {\bf (ii)}\quad n \mathbb{P}\left ( \max_{1 \leq i < j \leq n}|X_{1,i}X_{1,j} | \geq \sqrt{n \log n}\right ) \to 0 \quad{\rm as}\,n \to \infty,$$ $$ {\bf (iii)}\quad \frac{W_{\mu, n}}{\sqrt {n \log n}}\stackrel{\mathbb{P}}{\rightarrow} 2\sigma^{2},$$ $$ {\bf (iv)}\quad \left ( \frac{n}{\log n}\right )^{1/2} L_{n} \stackrel{\mathbb{P}}{\rightarrow} 2,$$ $$ {\bf (v)}\quad \lim_{n \rightarrow \infty}\mathbb{P}\left (\frac{W_{\mu, n}^{2}}{n \sigma^{4}} - a_{n}\leq t \right ) = \exp \left \{ - \frac{1}{\sqrt{8\pi}} e^{-t/2}\right \}, - \infty < t < \infty,$$ $$ {\bf (vi)}\quad \lim_{n \rightarrow \infty}\mathbb{P}\left (n L_{n}^{2} - a_{n}\leq t \right ) = \exp \left \{ - \frac{1}{\sqrt{8 \pi}} e^{-t/2}\right \}, - \infty < t < \infty$$ where ${\mu=\mathbb{E}X_{1,1}, \sigma^{2}=\mathbb{E}(X_{1,1} - \mu)^{2}}$ , and a n  = 4 log p n ? log log p n . The equivalences between (i), (ii), (iii), and (v) assume that only ${\mathbb{E}X_{1,1}^{2} < \infty}$ . Weak laws of large numbers for W n and L n , n ≥  1, are also established and these are of the form ${W_{n}/n^{\alpha}\stackrel{\mathbb{P}}{\rightarrow} 0}\,(\alpha > 1/2)$ and ${n^{1-\alpha}L_{n}\stackrel{\mathbb{P}}{\rightarrow} 0}\,(1/2 < \alpha \leq 1)$ , respectively. The current work thus provides weak limit analogues of the strong limit theorems of Li and Rosalsky as well as a necessary and sufficient condition for the asymptotic distribution of L n obtained by Jiang. Some open problems are also posed.  相似文献   

3.
Let X 1,X 2,…?, be independent random variables with EX i =0 and write \(S_{n}=\sum_{i=1}^{n}X_{i}\) and \(V_{n}^{2}=\sum_{i=1}^{n}X_{i}^{2}\). This paper provides new refined results on the Cramér-type large deviation for the so-called self-normalized sum S n /V n . The major techniques used to derive these new findings are different from those used previously.  相似文献   

4.
Let {X n : n ?? 1} be a strictly stationary sequence of positively associated random variables with mean zero and finite variance. Set $S_n = \sum\limits_{k = 1}^n {X_k }$ , $Mn = \mathop {\max }\limits_{k \leqslant n} \left| {S_k } \right|$ , n ?? 1. Suppose that $0 < \sigma ^2 = EX_1^2 + 2\sum\limits_{k = 2}^\infty {EX_1 X_k < \infty }$ . In this paper, we prove that if E|X 1|2+?? < for some ?? ?? (0, 1], and $\sum\limits_{j = n + 1}^\infty {Cov\left( {X_1 ,X_j } \right) = O\left( {n^{ - \alpha } } \right)}$ for some ?? > 1, then for any b > ?1/2 $$\mathop {\lim }\limits_{\varepsilon \searrow 0} \varepsilon ^{2b + 1} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^{b - 1/2} }} {{n^{3/2} \log n}}} E\left\{ {M_n - \sigma \varepsilon \sqrt {2n\log \log n} } \right\}_ + = \frac{{2^{ - 1/2 - b} E\left| N \right|^{2(b + 1)} }} {{(b + 1)(2b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2(b + 1)} }}}$$ and $$\mathop {\lim }\limits_{\varepsilon \nearrow \infty } \varepsilon ^{ - 2(b + 1)} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^b }} {{n^{3/2} \log n}}E\left\{ {\sigma \varepsilon \sqrt {\frac{{\pi ^2 n}} {{8\log \log n}}} - M_n } \right\}} _ + = \frac{{\Gamma (b + 1/2)}} {{\sqrt 2 (b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2b + 2} }}} ,$$ where x + = max{x, 0}, N is a standard normal random variable, and ??(·) is a Gamma function.  相似文献   

5.
We throw i.i.d. random squares S 1,S 2,… with respective side lengths l 1,l 2,… uniformly on the two-dimensional torus ?/?×?/?, where $\{l_{n}\}_{n=1}^{\infty}$ is a nonincreasing sequence with 0<l n <1 and lim n→∞ l n =0. A necessary and sufficient condition for covering the connected curve {0}×?/? is $$\sum_{n=1}^{\infty}\frac{l_n}{(\sum_{i=1}^{n}l_i)^2}\exp{\Biggl(\sum _{i=1}^{n}l_i^2\Biggr)}=\infty.$$   相似文献   

6.
In this paper, we consider a random variable \(Z_{t}=\sum_{i=1}^{N_{t}}a_{i}X_{i}\), where \(X, X_{1}, X_{2}, \ldots\) are independent identically distributed random variables with mean E X=μ and variance D X=σ 2>0. It is assumed that Z 0=0, 0≤a i <∞, and N t , t≥0 is a non-negative integer-valued random variable independent of X i , i=1,2,…?. The paper is devoted to the analysis of accuracy of the standard normal approximation to the sum \(\tilde{Z}_{t}=(\mathbf{D}Z_{t})^{-1/2}(Z_{t}-\mathbf{E}Z_{t})\), large deviation theorems in the Cramer and power Linnik zones, and exponential inequalities for \(\mathbf{P}(\tilde{Z}_{t}\geq x)\).  相似文献   

7.
Abstract Let X1,X2,...be a sequence of dependent and heavy-tailed random variables with distributions F1,F2,…. on (-∞,∞),and let т be a nonnegative integer-valued random variable independent of the seq...  相似文献   

8.
The vector space \({\otimes^{n}\mathbb{C}^2}\) upon which the XXZ Hamiltonian with n spins acts bears the structure of a module over both the Temperley–Lieb algebra \({{\rm TL}_{n}(\beta = q + q^{-1})}\) and the quantum algebra \({{\rm U}_{q} \mathfrak{sl}_2}\) . The decomposition of \({\otimes^{n}\mathbb{C}^2}\) as a \({{\rm U}_{q} \mathfrak{sl}_2}\) -module was first described by Rosso (Commun Math Phys 117:581–593, 1988), Lusztig (Cont Math 82:58–77, 1989) and Pasquier and Saleur (Nucl Phys B 330:523–556, 1990) and that as a TL n -module by Martin (Int J Mod Phys A 7:645–673, 1992) (see also Read and Saleur Nucl Phys B 777(3):316–351, 2007; Gainutdinov and Vasseur Nucl Phys B 868:223–270, 2013). For q generic, i.e. not a root of unity, the TL n -module \({\otimes^{n}\mathbb{C}^2}\) is known to be a sum of irreducible modules. We construct the projectors (idempotents of the algebra of endomorphisms of \({\otimes^{n}\mathbb{C}^2}\) ) onto each of these irreducible modules as linear combinations of elements of \({{\rm U}_{q} \mathfrak{sl}_2}\) . When q = q c is a root of unity, the TL n -module \({\otimes^{n}\mathbb{C}^2}\) (with n large enough) can be written as a direct sum of indecomposable modules that are not all irreducible. We also give the idempotents projecting onto these indecomposable modules. Their expression now involves some new generators, whose action on \({\otimes^{n}\mathbb{C}^2}\) is that of the divided powers \({(S^{\pm})^{(r)} = \lim_{q \rightarrow q_{c}} (S^{\pm})^r/[r]!}\) .  相似文献   

9.
The classical Poisson theorem says that if ξ 1, ξ 2, … are i.i.d. 0–1 Bernoulli random variables taking on 1 with probability p n λ/n, then the sum S n = Σ i=1 n ξ i is asymptotically in n Poisson distributed with the parameter λ. It turns out that this result can be extended to sums of the form ${S_n} = \sum\nolimits_{i = 1}^n {{\xi _{{q_1}(i)}} \cdots {\xi _{{q_\ell }(i)}}} $ where now ${X_{{q_1}(i), \ldots ,}}{X_{{q_\ell }(i)}}$ and ${T^{{q_1}(i)}}x, \ldots ,{T^{{q_\ell }(i)}}x$ are integer-valued increasing functions. We obtain also the Poissonian limit for numbers of arrivals to small sets of ?-tuples ${X_{{q_1}(i), \ldots ,}}{X_{{q_\ell }(i)}}$ for some Markov chains X n and for numbers of arrivals of ${T^{{q_1}(i)}}x, \ldots ,{T^{{q_\ell }(i)}}x$ to small cylinder sets for typical points x of a sub-shift of finite type T.  相似文献   

10.
We consider the Markov chain ${\{X_n^x\}_{n=0}^\infty}$ on ${\mathbb{R}^d}$ defined by the stochastic recursion ${X_{n}^{x}= \psi_{\theta_{n}} (X_{n-1}^{x})}$ , starting at ${x\in\mathbb{R}^d}$ , where ?? 1, ?? 2, . . . are i.i.d. random variables taking their values in a metric space ${(\Theta, \mathfrak{r})}$ , and ${\psi_{\theta_{n}} :\mathbb{R}^d\mapsto\mathbb{R}^d}$ are Lipschitz maps. Assume that the Markov chain has a unique stationary measure ??. Under appropriate assumptions on ${\psi_{\theta_n}}$ , we will show that the measure ?? has a heavy tail with the exponent ???>?0 i.e. ${\nu(\{x\in\mathbb{R}^d: |x| > t\})\asymp t^{-\alpha}}$ . Using this result we show that properly normalized Birkhoff sums ${S_n^x=\sum_{k=1}^n X_k^x}$ , converge in law to an ??-stable law for ${\alpha\in(0, 2]}$ .  相似文献   

11.
Let {X,X n ; n?R0} be a sequence of identically distributed ??-mixing dependent random variables taking values in a type 2 Banach space B with topological dual B ?. Considering the geometrically weighted series $\xi(\beta)= \sum_{n=0}^{\infty}\beta^{n}X_{n}$ for 0<??<1, a general law of the iterated logarithm for ??(??) is obtained without second moment.  相似文献   

12.
Let X 0 and X 1 be two order continuous Banach function spaces on a finite measure space, (E 0, E 1) a Banach space interpolation pair, and \({T: X_0 + X_1 \to E_0 + E_1}\) an admissible operator between the pairs (X 0,X 1) and (E 0,E 1). If \({T_{\theta} : [X_0, X_1]_{[\theta ]} \to [E_0, E_1]_{[\theta]}}\) is the interpolated operator by the first complex method of Calderón and m 0, m 1 and m θ are the vector measures coming from \({{T\vert}_{X_0}}\) and \({{T\vert}_{X_1}}\) and T θ, respectively, then we study the relationship between the optimal domain \({L^1(m_{\theta})}\) of T θ and the complex interpolation space \({[L^1(m_0),L^1(m_1)]_{[\theta]}}\) of the optimal domains of \({{T\vert}_{X_0}}\) and \({{T\vert}_{X_1}}\) . Then, we apply the obtained result to study interpolation of p-th power factorable and bidual (p,q)-power-concave operators.  相似文献   

13.
Let (X jk ) jk≥1 be i.i.d. nonnegative random variables with bounded density, mean m, and finite positive variance σ 2. Let M be the nn random Markov matrix with i.i.d. rows defined by ${M_{jk}=X_{jk}/(X_{j1}+\cdots+X_{jn})}$ . In particular, when X 11 follows an exponential law, the random matrix M belongs to the Dirichlet Markov Ensemble of random stochastic matrices. Let λ1, . . . , λ n be the eigenvalues of ${\sqrt{n}M}$ i.e. the roots in ${\mathbb{C}}$ of its characteristic polynomial. Our main result states that with probability one, the counting probability measure ${\frac{1}{n}\delta_{\lambda_1}+\cdots+\frac{1}{n}\delta_{\lambda_n}}$ converges weakly as n→∞ to the uniform law on the disk ${\{z\in\mathbb{C}:|z|\leq m^{-1}\sigma\}}$ . The bounded density assumption is purely technical and comes from the way we control the operator norm of the resolvent.  相似文献   

14.
qVЕРхНИИ пРЕДЕл пОслЕД ОВАтЕльНОстИ МНОжЕс тВA n ОпРЕДЕльЕтсь сООтНО шЕНИЕМ \(\mathop {\lim sup}\limits_{n \to \infty } A_n = \mathop \cap \limits_{k = 1}^\infty \mathop \cup \limits_{n = k}^\infty A_n . B\) стАтьЕ РАссМАтРИВА Етсь слЕДУУЩИИ ВОпРО с: ЧтО МОжНО скАжАть О ВЕРхНИх пРЕДЕлАх \(\mathop {\lim sup}\limits_{k \to \infty } A_{n_k }\) , еслИ ИжВЕстНО, ЧтО пРЕсЕЧЕНИь \(\mathop \cap \limits_{k = 1}^\infty A_{n_k }\) «МАлы» Дль кАж-ДОИ пОДпОслЕДОВАтЕльНОстИ \((A_{n_k } )\) ? ДОкАжыВАЕтсь, Ч тО
  1. ЕслИ \(\mathop \cap \limits_{k = 1}^\infty A_{n_k }\) — кОНЕЧНОЕ МНО жЕстВО Дль кАжДОИ пОДпОслЕДОВАтЕльНОстИ \((A_{n_k } )\) , тО НАИДЕтсь тАкАь пОДпО слЕДОВАтЕльНОсть, Дл ь кОтОРОИ МНОжЕстВО \(\mathop {\lim sup}\limits_{k \to \infty } A_{n_k }\) сЧЕтНО;
  2. ЕслИ \(2^{\aleph _0 } = \aleph _1\) , тО сУЩЕстВУЕ т тАкАь пОслЕДОВАтЕл ьНОсть (An), ЧтО \(\mathop \cap \limits_{k = 1}^\infty A_{n_k }\) — сЧЕтНОЕ МНОжЕстВО Дль лУБОИ п ОДпОслЕДОВАтЕльНОстИ \((A_{n_k } )\) , НО \(\mathop {\lim sup}\limits_{k \to \infty } A_{n_k }\) ИМЕЕт МОЩ-НОсть кОНтИНУУМА;
  3. ЕслИA n — БОРЕлЕ ВскИЕ МНОжЕстВА В НЕкОтОРО М пОлНОМ сЕпАРАБЕльНО М МЕтРИЧЕскОМ пРОстРАНстВЕ, И \(\mathop \cap \limits_{k = 1}^\infty A_{n_k }\) — сЧЕт НОЕ МНОжЕстВО Дль кАж ДОИ пОДпОслЕДОВАтЕльНОстИ \((A_{n_k } )\) , тО сУЩЕстВУЕт тАкАь п ОДпОслЕДОВАтЕльНОсть, ЧтО \(\mathop {\lim sup}\limits_{k \to \infty } A_{n_k }\) — сЧЕтНОЕ МНОжЕстВО. кРОМЕ тОгО, ДОкАжАНО, Ч тО В слУЧАьх А) И В) В пОслЕДОВАтЕльНОстИ (A n ) сУЩЕстВУЕт схОДьЩА ьсь пОДпОслЕДОВАтЕльНО сть.
кРОМЕ тОгО, ДОкАжАНО, Ч тО В слУЧАьх А) И В) В пОслЕДОВАтЕльНОстИ (А n ) сУЩЕстВУЕт схОДьЩ Аьсь пОДпОслЕДОВАтЕльНО сть.  相似文献   

15.
Suppose that X is a right process which is associated with a non-symmetric Dirichlet form $(\mathcal{E},D(\mathcal{E}))$ on L 2(E;m). For $u\in D(\mathcal{E})$ , we have Fukushima??s decomposition: $\tilde{u}(X_{t})-\tilde{u}(X_{0})=M^{u}_{t}+N^{u}_{t}$ . In this paper, we investigate the strong continuity of the generalized Feynman?CKac semigroup defined by $P^{u}_{t}f(x)=E_{x}[e^{N^{u}_{t}}f(X_{t})]$ . Let $Q^{u}(f,g)=\mathcal{E}(f,g)+\mathcal{E}(u,fg)$ for $f,g\in D(\mathcal{E})_{b}$ . Denote by J 1 the dissymmetric part of the jumping measure J of $(\mathcal{E},D(\mathcal{E}))$ . Under the assumption that J 1 is finite, we show that $(Q^{u},D(\mathcal{E})_{b})$ is lower semi-bounded if and only if there exists a constant ?? 0??0 such that $\|P^{u}_{t}\|_{2}\leq e^{\alpha_{0}t}$ for every t>0. If one of these conditions holds, then $(P^{u}_{t})_{t\geq0}$ is strongly continuous on L 2(E;m). If X is equipped with a differential structure, then this result also holds without assuming that J 1 is finite.  相似文献   

16.
Several authors have studied the uniform estimate for the tail probabilities of randomly weighted sumsa.ud their maxima. In this paper, we generalize their work to the situation thatis a sequence of upper tail asymptotically independent random variables with common distribution from the is a sequence of nonnegative random variables, independent of and satisfying some regular conditions. Moreover. no additional assumption is required on the dependence structureof {θi,i≥ 1).  相似文献   

17.
We consider the stochastic recursion ${X_{n+1} = M_{n+1}X_{n} + Q_{n+1}, (n \in \mathbb{N})}$ , where ${Q_n, X_n \in \mathbb{R}^d }$ , M n are similarities of the Euclidean space ${ \mathbb{R}^d }$ and (Q n , M n ) are i.i.d. We study asymptotic properties at infinity of the invariant measure for the Markov chain X n under assumption ${\mathbb{E}{[\log|M|]}=0}$ i.e. in the so called critical case.  相似文献   

18.
A function ${u : X \to \mathbb{R}}$ defined on a partially ordered set is quasi-Leontief if, for all ${x \in X}$ , the upper level set ${\{x\prime \in X : u(x\prime) \geq u(x)\}}$ has a smallest element; such an element is an efficient point of u. An abstract game ${u_{i} : \prod^{n}_{j=1} X_j \to \mathbb{R}, i \in \{1, \ldots , n\}}$ , is a quasi-Leontief game if, for all i and all ${(x_{j})_{j \neq i} \in \prod_{j \neq i} X_{j}, u_{i}((x_{j})_{j \neq i};-) : X_{i} \to \mathbb{R}}$ is quasi-Leontief; a Nash equilibrium x* of an abstract game ${u_{i} :\prod^{n}_{j=1} X_{j} \to \mathbb{R}}$ is efficient if, for all ${i, x^{*}_{i}}$ is an efficient point of the partial function ${u_{i}((x^{*}_{j})_{j \neq i};-) : X_{i} \to \mathbb{R}}$ . We establish the existence of efficient Nash equilibria when the strategy spaces X i are topological semilattices which are Peano continua and Lawson semilattices.  相似文献   

19.
Let G be a graph of order n such that \(\sum_{i=0}^{n}(-1)^{i}a_{i}\lambda^{n-i}\) and \(\sum_{i=0}^{n}(-1)^{i}b_{i}\lambda^{n-i}\) are the characteristic polynomials of the signless Laplacian and the Laplacian matrices of G, respectively. We show that a i b i for i=0,1,…,n. As a consequence, we prove that for any α, 0<α≤1, if q 1,…,q n and μ 1,…,μ n are the signless Laplacian and the Laplacian eigenvalues of G, respectively, then \(q_{1}^{\alpha}+\cdots+q_{n}^{\alpha}\geq\mu_{1}^{\alpha}+\cdots+\mu _{n}^{\alpha}\).  相似文献   

20.
A bounded linear operator A acting on a Banach space X is said to be an upper triangular block operators of order n, and we write ${A \in \mathcal{UT}_{n}(X)}$ , if there exists a decomposition of ${X = X_{1} \oplus . . . \oplus X_{n}}$ and an n × n matrix operator ${(A_{i,j})_{\rm 1 \leq i, j \leq n}}$ such that ${A = (A_{i, j})_{1 \leq i, j \leq n}, A_{i, j} = 0}$ for i > j. In this note we characterize a large set of entries A i, j with j > i such that ${\sigma_{\rm D} (A) = {\bigcup\limits_{i = 1}^{n}} \sigma_{\rm D} (A_{i, i})}$ ; where σD(.) is the Drazin spectrum. Some applications concerning the Fredholm theory and meromorphic operators are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号