首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A metal-free route involving a sequential reaction of 2-alknylbenzoate and aryl-1,2-diamine is described for the generation of 2-(quinoxalin-2-yl)benzoate. The sequential reaction combines NBS-mediated diketonization of 2-alknylbenzoate and condensation reaction with aryl-1,2-diamine, and proceeds smoothly under mild reaction conditions and an array of 2-(quinoxalin-2-yl)benzoate is achieved with high efficiency and excellent functional group tolerance. Mechanism studies indicate oxygen transfer reaction is observed and water is incorporated into neighboring ester group.  相似文献   

2.
A side reaction was found in the reaction of a 2-oxazoline compound with a carboxylic acid. It is an oxazoline ring opening addition to an amide group formed by the main reaction. In addition, certain phosphites were found to act as catalyst for the side reaction. The rate constants of the main and side reactions in the system of 2-phenyl-2-oxazoline and n-octanoic acid were obtained through simulation of the reactions on an analog computer. The side reaction makes it impossible for a very high molecular weight polymer to form in the reaction of a bis-2-oxazoline with a dicarboxylic acid, but makes it possible for a new crosslinked polymer to form when excess bis-2-oxazoline and a dicarboxylic acid are heated in the presence of a certain phosphite.  相似文献   

3.
The bimolecular single collision reaction potential energy surface of CN radical with ketene (CH2CO) was investigated by means of B3LYP and QCISD(T) methods. The calculated results indicate that there are three possible channels in the reaction. The first is an attack reaction by the carbon atom of CN at the carbon atom of the methylene of CH2CO to form the intermediate NCCH2CO followed by a rupture reaction of the C-C bond combined with -CO group to the products CH2CN CO. The second is a direct addition reaction between CN and CH2CO to form the intermediate CH2C(O)CN followed by its isomerization into NCCH2CO via a CN-shift reaction, and subsequently, NCCH2CO dissociates into CH2CN CO through a CO-loss reaction. The last is a direct hydrogen abstraction reaction of CH2CO by CN radical. Because of the existence of a 15.44 kJ/mol reaction barrier and higher energy of reaction products, the path can be ruled out as an important channel in the reaction kinetics. The present theoretical computation results, which give an available suggestion on the reaction mechanism, are in good agreement with previous experimental studies.  相似文献   

4.
The effect of a single water molecule on the reaction between H(2)O(2) and HO has been investigated by employing MP2 and CCSD(T) theoretical approaches in connection with the aug-cc-PVDZ, aug-cc-PVTZ, and aug-cc-PVQZ basis sets and extrapolation to an ∞ basis set. The reaction without water has two elementary reaction paths that differ from each other in the orientation of the hydrogen atom of the hydroxyl radical moiety. Our computed rate constant, at 298 K, is 1.56 × 10(-12) cm(3) molecule(-1) s(-1), in excellent agreement with the suggested value by the NASA/JPL evaluation. The influence of water vapor has been investigated by considering either that H(2)O(2) first forms a complex with water that reacts with hydroxyl radical or that H(2)O(2) reacts with a previously formed H(2)O·OH complex. With the addition of water, the reaction mechanism becomes much more complex, yielding four different reaction paths. Two pathways do not undergo the oxidation reaction but an exchange reaction where there is an interchange between H(2)O(2)·H(2)O and H(2)O·OH complexes. The other two pathways oxidize H(2)O(2), with a computed total rate constant of 4.09 × 10(-12) cm(3) molecule(-1) s(-1) at 298 K, 2.6 times the value of the rate constant of the unassisted reaction. However, the true effect of water vapor requires taking into account the concentration of the prereactive bimolecular complex, namely, H(2)O(2)·H(2)O. With this consideration, water can actually slow down the oxidation of H(2)O(2) by OH between 1840 and 20.5 times in the 240-425 K temperature range. This is an example that demonstrates how water could be a catalyst in an atmospheric reaction in the laboratory but is slow under atmospheric conditions.  相似文献   

5.
The reaction of O2 with HOCO has been studied by using an ab initio direct dynamics method based on the UB3PW91 density functional theory. Results show that the reaction can occur via two mechanisms: direct hydrogen abstraction and an addition reaction through a short-lived HOC(O)O2 intermediate. The lifetime of the intermediate is predicted to be 660 +/- 30 fs. Although it is an activated reaction, the activation energy is only 0.71 kcal/mol. At room temperature, the obtained thermal rate coefficient is 2.1 x 10(-12) cm3 molecule(-1) s(-1), which is in good agreement with the experimental results.  相似文献   

6.
焦炭溶损反应动力学及其模型研究   总被引:3,自引:0,他引:3  
崔平  张磊  杨敏  汪洋 《燃料化学学报》2006,34(3):280-284
利用未反应核收缩模型对高炉焦炭与CO2的反应动力学进行了研究,建立了以可测参数(R)表达的焦炭与CO2的反应动力学关系式。并对反应速率常数和有效扩散系数、表观反应活化能和有效扩散活化能及反应过程中各步骤阻力进行了分析。结果表明,(1)焦炭与CO2的反应符合未反应核收缩模型。(2)反应的表观活化能Ea=124.5kJ/mol,有效扩散活化能ED=642.4 kJ/mol;界面化学反应的阻力随反应温度升高而增加;残余灰层内的内扩散传质阻力相对比例随温度升高而下降。(3)焦炭溶损反应在低温区主要受内扩散控制,随着温度升高,反应由外扩散、化学反应和内扩散三步控制;当进入高温区,反应进行一段时间后主要受内扩散控制。  相似文献   

7.
银配合物与联氨定向反应的研究I   总被引:2,自引:0,他引:2  
夏式均  程德平 《化学学报》1990,48(2):127-131
本文研究了银的不同配合物与N2H4的反应, 得出微量的Cu^2^+不仅能加快反应速度, 能有效地促进N2H4按反应(4)进行四电子定向反应的比率, 而且N2H4按四电子定向的反应率随银配合物稳4Ag^+(AgL^q^±2)+N2H4 4Ag+N2+4H^+(8L^{q±(-1)]/2) (4)Ag^+(AgL^q^±2)+N2H4 Ag+1/2N2+NH3+H^+(+2L[q±(-1)]/2) (5)定常数的增大而降低的结论。无Cu^2^+时, N2H4的四电子反应率与银配合物的logβ2成线性关系; Cu^2^+存在时, N2H4单电子反应率的对数与1/logβ2呈线性关系。  相似文献   

8.
Xiuhui Lu  Xin Che  Leyi Shi  Junfeng Han 《中国化学》2010,28(10):1803-1809
The mechanism of the cycloaddition reaction of forming germanic hetero‐polycyclic compound between singlet germylene carbene and formaldehyde has been investigated with MP2/6‐31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by CCSD (T)//MP2/6‐31G* method. From the potential energy profile, we predict that the cycloaddition reaction of forming germanic hetero‐polycyclic compound between singlet germylene carbene and formaldehyde has two competitive dominant reaction pathways. First dominant reaction pathway consists of four steps: (1) the two reactants (R1, R2) first form an intermediate (INT1) through a barrier‐free exothermic reaction of 117.5 kJ/mol; (2) intermediate (INT1) then isomerizes to a four‐membered ring compound (P2) via a transition state (TS2) with an energy barrier of 25.4 kJ/mol; (3) four‐membered ring compound (P2) further reacts with formaldehyde (R2) to form an intermediate (INT3), which is also a barrier‐free exothermic reaction of 19.6 kJ/mol; (4) intermediate (INT3) isomerizes to a germanic bis‐heterocyclic product (P3) via a transition state (TS3) with an energy barrier of 5.8 kJ/mol. Second dominant reaction pathway is as follows: (1) the two reactants (R1, R2) first form an intermediate (INT4) through a barrier‐free exothermic reaction of 197.3 kJ/mol; (2) intermediate (INT4) further reacts with formaldehyde (R2) to form an intermediate (INT5), which is also a barrier‐free exothermic reaction of 141.3 kJ/mol; (3) intermediate (INT5) then isomerizes to a germanic bis‐heterocyclic product (P5) via a transition state (TS5) with an energy barrier of 36.7 kJ/mol.  相似文献   

9.
It has been shown that 1,1'-oxalyldiimidazole (ODI) is formed as an intermediate in the imidazole-catalyzed reaction of oxalate esters with hydrogen peroxide. Therefore, the kinetics of the chemiluminescence reaction of 1,1'-oxalyldiimidazole (ODI) with hydrogen peroxide in the presence of a fluorophore was investigated in order to further elucidate the mechanism of the peroxyoxalate chemiluminescence reaction. The effects of concentrations of ODI, hydrogen peroxide, imidazole (ImH), the general-base catalysts lutidine and collidine, and temperature on the chemiluminescence profile and relative quantum efficiency in the solvent acetonitrile were determined using the stopped-flow technique. Pseudo-first-order rate constant measurements were made for concentrations of either H2O2 or ODI in large excess. All of the reaction kinetics are consistent with a mechanism in which the reaction is initiated by a base-catalyzed substitution of hydrogen peroxide for imidazole in ODI to form an imidazoyl peracid (Im(CO)2OOH). In the presence of a large excess of H2O2, this intermediate rapidly decays with both a zero- and first-order dependence on the H2O2 concentration. It is proposed that the zero-order process reflects a cyclization of this intermediate to form a species capable of exciting a fluorophore via the "chemically initiated electron exchange mechanism" (CIEEL), while the first-order process results from the substitution of an additional molecule of hydrogen peroxide to the imidazoyl peracid to form dihydroperoxyoxalate, reducing the observed quantum yield. Under conditions of a large excess of ODI, the reaction is more than 1 order of magnitude more efficient at producing light, and the quantum yield increases linearly with increasing ODI concentration. Again, it is proposed that the slow initiating step of the reaction involves the substitution of H2O2 for imidazole to form the imidazoyl peracid. This intermediate may decay by either cyclization or by reaction with another ODI molecule to form a cyclic peroxide that is much more efficient at energy transfer with the fluorophore. The reaction kinetics clearly distinguishes two separate pathways for the chemiluminescent reaction.  相似文献   

10.
采用活塞流管式积分反应器,在1.0 MPa压力下,对环境友好铁系无铬NBC-1型高温变换催化剂上变换反应本征动力学数据进行了测试。根据测定得到的数据,对幂函数动力学模型进行了模型参数估计和模型检验,得到了高度显著的动力学回归方程。从动力学方程可以得出:该高温变换催化剂上变换反应活化能比较低,因此其低温活性较好;该催化剂上H2O组分对反应速率的影响比较大;CO2对变换反应速率的抑制作用很大,因此为提高变换反应速率,应当设法减小CO2的不利影响;H2组分对反应速率的影响很小,在实际应用过程中,可以忽略。  相似文献   

11.
The dicarbollyliron (Cb2Fe-) redox reaction is studied at an amalgamated platinum electrode coated with a monolayer of behenic acid on top of which hemin is adsorbed. The redox reaction of Cb2Fe- involves two stages. First, an electrochemical reaction of adsorbed hemin proceeds, which involves the electron transfer through the dielectric monolayer; it is followed by the hemin’s chemical redox reaction with dissolved Cb2Fe-. It is shown that the adsorbed hemin transformation, no matter how small, is sufficient for the stimulation of the Cb2Fe- redox reaction.  相似文献   

12.
The reactions of NO and/or NO2- with three water-soluble cobalt porphyrins [Co(III)(P)(H2O)2]n, where P = TPPS, TCPP, and TMPyP, were studied in detail. At pH < 3, the reaction with NO proceeds through a single reaction step. From the kinetic data and activation parameters, the [Co(III)(P)(NO)(H2O)]n complex is proposed to be the primary product of the reaction with NO. This complex reacts further with a second NO molecule through an inner-sphere electron-transfer reaction to generate the final product, [Co(III)(P)(NO-)](n-1). At pH > 3, although a single reaction step is also observed, a systematic study as a function of the NO and NO2- concentrations revealed that two reaction steps are operative. In the first, NO2- and NO compete to substitute coordinated water in [Co(III)(P)(H2O)2]n to yield [Co(III)(P)(NO)(H2O)]n and [Co(III)(P)(NO2-)(H2O)](n-1) as the primary reaction products. Only the nitrite complex could be detected and no final product formation was observed during the reaction. It is proposed that [Co(III)(P)(NO)(H2O)]n rapidly reacts with NO2- to form the nitrite complex, which in the second reaction step reacts with another NO molecule to generate the final product through an inner-sphere electron-transfer reaction. The reported results are relevant for the interaction of vitamin B(12a) with NO and NO2-.  相似文献   

13.
The mechanism of the cycloaddition reaction between singlet dichloro‐germylene carbene and aldehyde has been investigated with MP2/6‐31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by zero‐point energy and CCSD (T)//MP2/6‐31G* method. From the potential energy profile, it can be predicted that the reaction has two competitive dominant reaction pathways. The channel (A) consists of four steps: (1) the two reactants (R1, R2) first form an intermediate INT2 through a barrier‐free exothermic reaction of 142.4 kJ/mol; (2) INT2 then isomerizes to a four‐membered ring compound P2 via a transition state TS2 with energy barrier of 8.4 kJ/mol; (3) P2 further reacts with aldehyde (R2) to form an intermediate INT3, which is also a barrier‐free exothermic reaction of 9.2 kJ/mol; (4) INT3 isomerizes to a germanic bis‐heterocyclic product P3 via a transition state TS3 with energy barrier of 4.5 kJ/mol. The process of channel (B) is as follows: (1) the two reactants (R1, R2) first form an intermediate INT4 through a barrier‐free exothermic reaction of 251.5 kJ/mol; (2) INT4 further reacts with aldehyde (R2) to form an intermediate INT5, which is also a barrier‐free exothermic reaction of 173.5 kJ/mol; (3) INT5 then isomerizes to a germanic bis‐heterocyclic product P5 via a transition state TS5 with an energy barrier of 69.4 kJ/mol. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

14.
Mixtures of the isomers 4-chloro-hex-2-ene and 2-chloro-hex-3-ene of different compositions were prepared in order to study their reaction with organo-tin thioglycolate. Whatever the initial composition of the mixture, the same composition of the isomeric products is obtained. This favours an ionic mechanism in which the rate-determining step is the formation of an allylic carbocation. The substitution reaction with free thioglycolate esters is more rapid than with the tin derivative. Thus, a second possible route for the stabilisation reaction can be proposed.  相似文献   

15.
应用量子化学密度泛函理论研究了燃煤烟气中As和AsO与O_2均相生成As_2O_3的反应机理。首先计算确定了各反应物、中间体、过渡态和产物的结构和能量,然后运用热力学和动力学方法对As_2O_3均相生成过程进行分析。结果表明,由As和AsO与O_2均相生成As_2O_3的最大反应能垒分别为32.9和157.2kJ/mol,在烟气中由As转化为As_2O_3更为容易进行。在500-1900 K下,各反应的正逆反应速率常数均随温度的提高而增大,但不同反应过程受温度影响的程度不同。As与O_2反应生成AsO和AsO_2的两个反应过程的平衡常数在所研究的温度范围内均大于10~5,能完全反应,可以认为是单向反应。AsO与O_2反应生成AsO_2的过程平衡常数在所研究的温度范围内小于10~5,反应不完全,转化率低。AsO与AsO_2生成As_2O_3(D3H)构型的平衡常数极低,反应难以进行,而生成As_2O_3(GAUCHE)构型反应能垒低,可自发进行。  相似文献   

16.
A novel reaction pathway of 2,3-allenoates with an electrophile (TsNBr2) in the presence of K2CO3 to produce (1E,2E)-3-bromo-4-oxo-N'-tosyl-2-alkenoxylimidic acid ethyl esters is reported. The reaction proceeds in a highly stereoselective fashion. A plausible mechanism to rationalize this reaction is also proposed.  相似文献   

17.
Fang DC  Harding LB  Klippenstein SJ  Miller JA 《Faraday discussions》2001,(119):207-22; discussion 255-74
A combination of high-level quantum-chemical simulations and sophisticated transition state theory analyses is employed in a study of the temperature dependence of the N2H + OH-->HNNOH recombination reaction. The implications for the branching between N2H + OH and N2 + H2O in the NH2 + NO reaction are also explored. The transition state partition function for the N2H + OH recombination reaction is evaluated with a direct implementation of variable reaction coordinate (VRC) transition state theory (TST). The orientation dependent interaction energies are directly determined at the CAS + 1 + 2/cc-pvdz level. Corrections for basis set limitations are obtained via calculations along the cis and trans minimum energy paths employing an approximately aug-pvtz basis set. The calculated rate constant for the N2H + OH-->HNNOH recombination is found to decrease significantly with increasing temperature, in agreement with the predictions of our earlier theoretical study. Conventional transition state theory analyses, employing new coupled cluster estimates for the vibrational frequencies and energies at the saddlepoints along the NH2 + NO reaction pathway, are coupled with the VRC-TST analyses for the N2H + OH channels to provide estimates for the branching in the NH2 + NO reaction. Modest variations in the exothermicity of the reaction (1-2 kcal mol-1), and in a few of the saddlepoint energies (2-4 kcal mol-1), yield TST based predictions for the branching fraction that are in satisfactory agreement with related experimental results. The unmodified results are in reasonable agreement for higher temperatures, but predict too low a branching ratio near room temperature, as well as too steep an initial rise.  相似文献   

18.
The bimolecular single collision reaction potential energy surface of an isocyanate NCO radical with a ketene CH2CO molecule was investigated by means of B3LYP and QCISD(T) methods. The computed results indicate that two possible reaction channels exist on the surface. One is an addition-elimination reaction process, in which the CH2CO molecule is attacked by the nitrogen atom at its methylene carbon atom to lead to the formation of the intermediate OCNCH2CO followed by a C-C rupture channel to the products CH2NCO+CO. The other is a direct hydrogen abstraction channel from CHzCO by the NCO radical to afford the products HCCO+HNCO. Because of a higher barrier in the hydrogen abstraction reaction than in the addition-elimination reaction, the direct hydrogen abstraction pathway can only be considered as a secondary reaction channel in the reaction kinetics of NCO+ CH2CO. The predicted results are in good agreement with previous experimental and theoretical investigations.  相似文献   

19.
We measure cross-diffusion coefficients in a five-component system, an aerosol OT (AOT) water-in-oil microemulsion loaded with two constituents of the Belousov-Zhabotinsky (BZ) reaction (H(2) O/AOT/BZ1/BZ2/octane). The species BZ1 is either NaBr, an inhibitor of the BZ reaction, or ferroin, a catalyst for the reaction. As species BZ2, we choose Br(2) , an intermediate in the reaction. The cross-diffusion coefficients between BZ1 and BZ2 are found to be negative, which can be understood in terms of complexation between these species. Using a four-variable model for the BZ reaction, we find that the cross-diffusion coefficients measured here can lead to a noticeable shift in the onset of Turing instability in the BZ-AOT system.  相似文献   

20.
The complexity of the transmetalation step in a Pd-catalyzed Negishi reaction has been investigated by combining experiment and theoretical calculations. The reaction between trans-[PdMeCl(PMePh(2))(2)] and ZnMe(2) in THF as solvent was analyzed. The results reveal some unexpected and relevant mechanistic aspects not observed for ZnMeCl as nucleophile. The operative reaction mechanism is not the same when the reaction is carried out in the presence or in the absence of an excess of phosphine in the medium. In the absence of added phosphine an ionic intermediate with THF as ligand ([PdMe(PMePh(2))(2)(THF)](+)) opens ionic transmetalation pathways. In contrast, an excess of phosphine retards the reaction because of the formation of a very stable cationic complex with three phosphines ([PdMe(PMePh(2))(3)](+)) that sequesters the catalyst. These ionic intermediates had never been observed or proposed in palladium Negishi systems and warn on the possible detrimental effect of an excess of good ligand (as PMePh(2)) for the process. In contrast, the ionic pathways via cationic complexes with one solvent (or a weak ligand) can be noticeably faster and provide a more rapid reaction than the concerted pathways via neutral intermediates. Theoretical calculations on the real molecules reproduce well the experimental rate trends observed for the different mechanistic pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号