首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, photoacoustic Fourier transform infrared (PA-FTIR) spectroscopy has been utilized to study interfacial interactions of undisturbed nacre and nacre powder from red abalone shell. The spectra of both undisturbed nacre and nacre powder showed characteristic bands of aragonite and proteins. Although nacre powder and undisturbed nacre are chemically identical, PA-FTIR spectrum of undisturbed nacre is found to be significantly different from that of nacre powder. A broad and strong band is observed at around 1485 cm(-1) in nacre powder. The intensity of this band is notably reduced in undisturbed nacre. This result is explained on the basis of interfacial interactions between aragonite platelets and acidic proteins. It is also observed that band at around 1788 cm(-1) originates from three overlapping bands 1797, 1787 and 1778 cm(-1). The band at around 1787 cm(-1) is assigned to CO stretching of carboxylate groups of acidic proteins. The other two bands at 1797 and 1778 cm(-1), originate from aragonite and have been assigned to combination bands, nu(3)+nu(4a) and nu(3)+nu(4b), respectively. For the study of stratification in undisturbed nacre, PA-FTIR spectra have been collected in step scan mode. The variation in spectra with depth can be attributed to changes in conformation of proteins as well as interfacial interactions.  相似文献   

2.
In this work, the interactions of aragonite and organic matrix in nacre with water are investigated using two-dimensional (2D) Fourier transform infrared (FTIR) spectroscopy. The 2D-FTIR analysis revealed four bands in the OH stretching region at around 3550, 3445, 3272 and 3074 cm(-1). Two additional bands were found at around 3616 and 3282 cm(-1) after deconvolution of the nacre spectrum. The bands at around 3616 and 3550 cm(-1) are assigned to asymmetric and symmetric OH stretching of partially hydrogen bonded water molecules. The bands at around 3445 and 3272 cm(-1) are assigned to asymmetric and symmetric OH stretching of water molecules fully hydrogen bonded with surrounding water molecules. Presence of above bands in the nacre spectrum suggests that water, in form of clusters, is present in protein matrix and aragonite pores. Water may also hydrogen bond with the organic matrix. The bands observed at 3282 and 3074 cm(-1) are assigned to asymmetric and symmetric OH stretching of water molecules, chemisorbed on surfaces of aragonite platelets. Polarization experiments suggest that H-O-H plane of water molecules is along to c-axis of aragonite platelets.  相似文献   

3.
Nacre (mother-of-pearl), made of inorganic and organic constituents (95 vol% aragonite calcium carbonate (CaCO(3)) platelets and 5 vol% elastic biopolymers), possesses a unique combination of remarkable strength and toughness, which is compatible for conventional high performance materials. The excellent mechanical properties are related to its hierarchical structure and precisely designed organic-inorganic interface. The rational design of aragonite platelet strength, aspect ratio of aragonite platelets, and interface strength ensures that the strength of nacre is maximized under platelet pull-out failure mode. At the same time, the synergy of strain hardening mechanisms acting over multiple scales results in platelets sliding on one another, and thus maximizes the energy dissipation of viscoplastic biopolymers. The excellent integrated mechanical properties with hierarchical structure have inspired chemists and materials scientists to develop biomimetic strategies for artificial nacre materials. This critical review presents a broad overview of the state-of-the-art work on the preparation of layered organic-inorganic nanocomposites inspired by nacre, in particular, the advantages and disadvantages of various biomimetic strategies. Discussion is focused on the effect of the layered structure, interface, and component loading on strength and toughness of nacre-mimic layered nanocomposites (148 references).  相似文献   

4.
贝壳珍珠层中的文石相对于在自然环境中生长的文石来说具有更优异的力学性能,这种力学性能取决于其独特的晶体排布方式。通过电子背散射衍射(EBSD)技术获得了马氏珠母贝中不同文石的结晶学取向信息,结果表明珍珠层中文石晶体的c轴均垂直于珍珠层层面,而a、b轴在平行珍珠层方向上具有两级取向畴结构:在初级畴结构内,相邻畴绕c轴偏转,导致不同畴之间a轴或b轴的取向差约64°。在次级畴结构内,文石板片围绕c轴偏转,导致不同畴之间a轴或b轴取向差在10°或20°左右。这种畴结构为我们认识珍珠层中文石的生长机理提供了有益线索。  相似文献   

5.
贝壳珍珠层中的文石相对于在自然环境中生长的文石来说具有更优异的力学性能,这种力学性能取决于其独特的晶体排布方式。通过电子背散射衍射(EBSD)技术获得了马氏珠母贝中不同文石的结晶学取向信息,结果表明珍珠层中文石晶体的c轴均垂直于珍珠层层面,而a、b轴在平行珍珠层方向上具有两级取向畴结构:在初级畴结构内,相邻畴绕c轴偏转,导致不同畴之间a轴或b轴的取向差约64°。在次级畴结构内,文石板片围绕c轴偏转,导致不同畴之间a轴或b轴取向差在10°或20°左右。这种畴结构为我们认识珍珠层中文石的生长机理提供了有益线索。  相似文献   

6.
彭景淞  程群峰 《化学通报》2017,80(12):1083-1092
自然界中,鲍鱼壳具有有机-无机多级次层状结构以及大量的复合界面作用,力学性能优异。这一独特的层状结构主要由霰石碳酸钙片层构成,并通过体积分数约为5%的生物高分子在层间进行粘合。受鲍鱼壳这一微观结构的启发,我们利用不同的基元材料如纳米蒙脱土、碳纳米管以及氧化石墨烯等构筑仿鲍鱼壳层状结构,并结合多种界面设计,实现不同界面、不同基元材料之间的协同作用,得到了力学性能优异的高分子纳米复合材料。仿生高分子纳米复合材料的成功制备,为今后的研究提供了崭新的思路,拓宽了高分子纳米复合材料的应用前景。  相似文献   

7.
Nacre, or mother-of-pearl, the tough, iridescent biomineral lining the inner side of some mollusk shells, has alternating biogenic aragonite (calcium carbonate, CaCO(3)) tablet layers and organic sheets. Nacre has been common in the shells of mollusks since the Ordovician (450 million years ago) and is abundant and well-preserved in the fossil record, e.g., in ammonites. Therefore, if any measurable physical aspect of the nacre structure was correlated with environmental temperatures, one could obtain a structural paleothermometer of ancient climates. Using X-ray absorption near-edge structure (XANES) spectroscopy, Photoelectron emission spectromicroscopy (PEEM), and X-ray linear dichroism we acquired polarization-dependent imaging contrast (PIC) maps of pristine nacre in cross-section. The new PIC-map data reveal that the nacre ultrastructure (nacre tablet width, thickness, and angle spread) is species-specific in at least eight mollusk species from completely different environments: Nautilus pompilius, Haliotis iris, Haliotis rufescens, Bathymodiolus azoricus, Atrina rigida, Lasmigona complanata, Pinctada margaritifera, and Mytilus californianus. Nacre species-specificity is interpreted as a result of adaptation to diverging environments. We found strong correlation between nacre crystal misorientations and environmental temperature, further supported by secondary ion mass spectrometry measurements of in situ δ(18)O in the nacre of one shell. This has far-reaching implications: nacre texture may be used as a paleothermometer of ancient climate, spanning 450 million years of Earth's history.  相似文献   

8.
Epoxy nanocomposites combining high toughness with advantageous functional properties are needed in many fields. However, fabricating high‐performance homogeneous epoxy nanocomposites with traditional methods remains a great challenge. Nacre with outstanding fracture toughness presents an ideal blueprint for the development of future epoxy nanocomposites. Now, high‐performance epoxy‐graphene layered nanocomposites were demonstrated with ultrahigh toughness and temperature‐sensing properties. These nanocomposites are composed of ca. 99 wt % organic epoxy, which is in contrast to the composition of natural nacre (ca. 96 wt % inorganic aragonite). These nanocomposites are named an inverse artificial nacre. The fracture toughness reaches about 4.2 times higher than that of pure epoxy. The electrical resistance is temperature‐sensitive and stable under various humidity conditions. This strategy opens an avenue for fabricating high‐performance epoxy nanocomposites with functional properties.  相似文献   

9.
彭景淞  程群峰 《物理化学学报》2022,38(5):2005006-19
石墨烯具有力学性能高、电导率优异等特点,然而单层石墨烯纳米片在组装成为宏观纳米复合材料的过程中,往往会出现片层团聚、界面作用弱、无规取向等问题,导致宏观石墨烯纳米复合材料性能远低于单片石墨烯。因此,如何将微观石墨烯纳米片层的高性能在宏观纳米复合材料中体现出来,是目前研究的热点和难点。本专论结合目前石墨烯纳米复合材料的研究现状,简要讨论了受天然鲍鱼壳的“砖-泥”结构的启发,仿生构筑高性能石墨烯纳米复合材料的最新研究进展。并对本课题组在仿鲍鱼壳石墨烯多功能纳米复合材料领域近年来的工作进行介绍,包括石墨烯纤维、薄膜和块材等多种宏观石墨烯纳米复合材料,系统总结构筑仿鲍鱼壳结构和反鲍鱼壳结构两种策略,在一定程度上解决了石墨烯在组装过程中的科学问题。同时,详细阐述了仿鲍鱼壳石墨烯多功能纳米复合材料的增强增韧机制和功能化策略,分析了今后研究工作中可能遇到的问题,并展望了未来的发展趋势。  相似文献   

10.
珍珠质是一种典型的有机,无机层状复合材料.其中95%以上是文石(CaCO3的一种晶型1小板片,填充在板片之间的薄层有机基质仅占1%-5%。这种精细的组织结构不仅使珍珠质具有绚丽的光泽。还赋予珍珠质超乎寻常的强度和韧性(为合成CaCO3晶体的3000多倍)。虽然在珍珠质中有机质的含量不足5%.然而正是这些有机质对珍珠质的结构、性能、晶体取向等起着至关重要的调控作用。  相似文献   

11.
To achieve structural order and strength-toughness balance similar to natural composites like nacre has been highly challenging, especially in a practically viable manner. Liu et al. developed a continuous preparation method to construct such high performance composites through a superspreading strategy at the oil/water/hydrogel interface. Exploiting the strong shear force at the interface, nanoparticles, such as nanosheets and nanotubes oriented and stacked together rapidly(as short as 358 ms) and the composites revealed the tensile strength and fracture toughness far higher those of natural nacre(9.0 and 20.4 times higher). This work has been published in Nature, 2020.  相似文献   

12.
In this study poly(ε-caprolactone) – calcium-carbonate composites were obtained by melt-mixing. Two crystal-modifications of calcium-carbonate were used, namely calcite and aragonite. Compressive and tensile tests were executed on samples with various compositions to analyze the effect of filler content and particle geometry. Both minerals improved the compressive modulus and strength significantly, however the influence of calcite was superior. The tensile modulus was also highly increased. The elongation at break remained high even at 50 wt% aragonite filling, but decreased with two orders in the case of calcite. Biocompatibility tests were also carried out with human osteoblast cells and the results were promising. The relative cell number increased due to calcium-carbonate. Both filler material is able to enhance the mechanical and biological properties of poly(ε-caprolactone) significantly. Aragonite samples remained more ductile compared to calcite ones, but the calcite filled scaffolds are stiffer, stronger and slightly more biocompatible than aragonite filled materials.  相似文献   

13.
贝壳珍珠层及其仿生材料的研究进展   总被引:3,自引:0,他引:3  
贝壳珍珠层是一种天然的有机-无机层状复合材料, 其独特的多尺度、多级次“砖-泥”组装结构赋予其优异的机械性能. 受贝壳珍珠层启发, 人们已利用不同方法制备了一系列仿生高强超韧层状复合材料, 这些材料在航空航天、军事、民用工程及机械等领域表现出广阔的应用前景. 本文就贝壳珍珠层的结构及增韧机制和近年来仿贝壳材料的制备方法及其研究进展进行了综述, 并提出一些看法和思考.  相似文献   

14.
The structure, organic matrix, and mineral structure of the scar (the interface between the adductor muscle and the shell) in Mytilus galloprovincialis were investigated. The scar was found to be a hierarchically multilayered structure composed of organic matrix and structurally different minerals. Different from the aragonite structure of the nacre, we have identified the top layer of the scar to contain structurally organized columnar calcite. This is the first report on calcite-containing scar. Study of the organic matrix showed that there was at least one protein that seemed to be preferentially localized in this columnar layer. Since the scar is the most important stress distribution site in the mussel, the function of the columnar structure and the matrix protein was discussed in relation to a similar structure at the tendon–bone connection site.  相似文献   

15.
Chitin nanofibers extracted from crab shell were used to reinforce polylactic acid (PLA) by extrusion molding. The dispersion problem of nanofibers in PLA matrix was solved by three pretreatment methods, including water pretreatment, polyethylene glycol (PEG) pretreatment, and polyethylene oxide (PEO) pretreatment. The results demonstrated that chitin nanofibers were distributed uniformly on the fracture surface of the PLA matrix with three different pretreatment methods. However, the aspect ratio of nanofibers with was reduced with the PEG and PEO pretreatment methods. Therefore, the bending modulus (MOE), bending strength (MOR) and impact toughness of the chitin nanofibers/PLA composites prepared by the water pretreatment method were much higher than those of the composites prepared by the PEG and the PEO pretreatment method. Furthermore, the reinforcing effect with the PEG method is slightly better than that with the PEO method. Although it was found that both PEG and PEO were good interfacial compatibilizers for nanofibers and PLA, the reinforcing effect of the composites prepared by PEG and PEO pretreat methods was suppressed due to the decrease of the aspect ratio for chitin nanofibers.  相似文献   

16.
In the chitons (Polyplacophora, Mollusca), the body is not entirely protected by the shell. Mineralized spicules or scales often, but not always, decorate the exposed part of the girdle. Here, we report a study on the composition and ultrastructural organization of these mineralized skeletal parts in four different chiton species. In all specimens, the mineral component (97–98 wt‐%) is aragonite, and the organic matrix (2–3 wt‐%) consists of highly glycosylated proteins. X‐Ray diffraction and scanning electron microscopy show that the organic matrix fibers are aligned, morphologically and crystallographically, with the prismatic aragonite crystals. Matrix and mineral are thus clearly related. The matrix–mineral composite bundles are, however, assembled in the various skeletal parts examined with widely different degrees of alignment and order. In the same organism, the crystals are aligned within a range of ±15° in one type of spicule, while they are randomly oriented in another type. The wide heterogeneity in shape, density, and ultrastructure suggests that the girdle mineralized tissues do not fulfill a fundamental role necessary for the survival of the organism. This, together with the lack of chitin in the organic matrix, supports the hypothesis that they evolved separately from the other chiton mineralized tissues, namely the shell plates and teeth.  相似文献   

17.
Liquid crystalline phases can be used to impart order into inorganic solids, creating materials that mimic natural architectures. Herein, mesoporous silica and organosilica films with layered structures and high surface areas have been templated by nanocrystalline chitin. Aqueous suspensions of spindle‐shaped chitin nanocrystals were prepared by sequential deacetylation and hydrolysis of chitin fibrils isolated from king crab shells. The nanocrystalline chitin self‐assembles into a nematic liquid‐crystalline phase that has been used to template silica and organosilica composites. Removal of the chitin template by either calcination or sulfuric‐acid‐catalyzed hydrolysis gave mesoporous silica and ethylene‐bridged organosilica films. The large, crack‐free mesoporous films have layered structures with features that originate from the nematic organization of the nanocrystalline chitin.  相似文献   

18.
Nacre is a biomaterial that has shown osteoinductive and osteoconductive properties in vitro and in vivo. These properties make nacre a material of interest for inducing bone regeneration. However, information is very limited regarding the introduction of nacre to dental implant surgery for promoting osteogenesis. This study investigated the potential of nacre powder for peri-implant bone regeneration in a porcine model. Ninety-six dental implants were placed into the tibia of twelve male domestic pigs. The dental implants were coated with nacre powder from the giant oyster before implantation. Implantations without nacre powder were used as control groups. Euthanization took place at 2, 4 and 6 weeks after implantation, after which we measured bone-to-implant contact (BIC) and bone volume density (BVD) of the implanted bone samples using micro-computed tomography (micro-CT), and examined the histology of the surrounding bone using histological sections stained with Stevenel’s blue and Alizarin red S. The micro-CT analyses showed that the BIC of dental implantations with nacre powder were significantly higher than those without nacre powder, by 7.60%. BVD of implantations with nacre powder were significantly higher than those without nacre powder, by 12.48% to 13.66% in cortical bone, and by 3.37% to 6.11% in spongy bone. Histological study revealed more peri-implant bone regeneration toward the surface of the dental implants after implantation with nacre powder. This was consistent with the micro-CT results. This study demonstrates the feasibility of using nacre to promote peri-implant bone regeneration in dental implantation.  相似文献   

19.
Novel protein-based nanocomposites were well prepared by in vivo synthesis and co-precipitation of soy protein isolate (SPI) with calcium carbonate (CaCO3) in an aqueous solution. The resultant CaCO3 in the nanocomposites was identified as calcite- and aragonite-type, respectively. The morphology and structure of the CaCO3/SPI composites were investigated by means of wide-angle X-ray diffraction, Fourier transform infrared spectra, scanning electron microscopy, and high-resolution transmission electron microscopy. The results revealed that the polymorph and the size of CaCO3 in the nanocomposites were dependent on its content, pH, and the conformation of soy protein. At the content of more than 5%, CaCO3 was changed into calcite crystal with the preference of growing along (104) plane. However, at lower content of less than 5%, CaCO3 preferred to form aragonite in the composite as a result of the modulation by soy protein. The aragonite nanocrystals were arrayed in the direction of (111) plane and self-assembled along beta-sheet planes of soy protein polypeptides. The mechanical properties, thermal stability, and water resistance of the CaCO3/SPI nanocomposites were significantly improved as a result of the nanosized effects. Interestingly, the aragonite/SPI nanocomposite exhibited higher tensile strength (about 50 MPa) than that of calcite/SPI, owing to a good compatibility and strong interaction between aragonite and soy protein polypeptides. This work provided a simple pathway to develop the soy protein-based bio-hybrid materials with high mechanical strength and valuable information on their structure-properties relationship.  相似文献   

20.
Some problems related to conservation of existing organic large-scale polymers (polyolefins, PS, PVC, polyesters, PA, etc.) and their replacement with recycled polymers and inorganic polyoxides are revisited: recycling of polymer materials; recyclable sources, such as cellulose, chitin, starch, etc.; enrichment of composites with an inorganic component; inorganic polymers; nanomaterials; and gradient materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号