首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A liquid paraffin-water emulsion was investigated using layered double hydroxide (LDH) particles and sodium dodecyl sulfate (SDS) as emulsifiers. Both emulsifiers are well-known to stabilize oil-in-water (o/w) emulsions. Surprisingly, a double phase inversion of the emulsion containing LDH particles is induced by the adsorption of SDS. At a constant LDH concentration, the emulsion is o/w type when SDS concentrations are low. At intermediate SDS concentrations, the first emulsion inversion from o/w to w/o occurs, which is attributed to the enhanced hydrophobicity of LDH particles caused by the desorption of the second layer of surfactant, leaving a densely packed SDS monolayer on the LDH exterior surfaces. The second inversion from water-in-oil (w/o) to o/w occurs at higher SDS concentrations, which may be due to the competitive adsorption at the oil/water interfaces between the LDH particles modified by the SDS bilayers and the free SDS molecules in the bulk solution, but the free SDS molecules dominate and determine the emulsion type. Laser-induced fluorescent confocal micrographs clearly confirm the adsorption of LDH particles on the surfaces of the initial o/w and intermediate w/o emulsion droplets, whereas no LDH particles were adsorbed on the final o/w emulsion droplet surfaces. Also, transmission electron microscopy (TEM) observations indicate that the shape of the final o/w emulsions is similar to that of the monomeric SDS-stabilized emulsion but different from that of the initial o/w emulsions. The adsorption behavior of SDS on LDH particles in water was investigated to offer an explanation for the emulsion double phase inversion. The zeta potential results show that the particles will flocculate first and then redisperse following surfactant addition. Also, X-ray diffraction (XRD) measurements indicate that SDS adsorption on the LDH interior surfaces will be complete at intermediate concentrations.  相似文献   

3.
Emulsions of equal volumes of a cyclic silicone oil and water stabilized by fumed silica nanoparticles alone can be inverted from oil-in-water (o/w) to water-in-oil (w/o) by simply increasing the concentration of particles. The phenomenon is found to be crucially dependent both on the inherent hydrophobicity of the particles and on their initial location. Inversion only occurs in systems with particles of intermediate hydrophobicity when dispersed in oil; emulsions prepared from the same particles but initially dispersed in water remain o/w at all particle concentrations. The stability and drop size distributions in the different emulsions are compared. Various hypotheses are put forward and argued to explain this novel inversion route including adsorption of oil onto particle surfaces, hysteresis of contact angle affecting particle wettability in situ, and the structure of particle dispersions in oil or water prior to emulsification inferred from rheology and light scattering measurements. We propose that the tendency for particles to behave more hydrophobically at higher concentrations in oil is due to the reduction in the effective silanol content at their surfaces as a result of gel formation via silanol-silanol hydrogen bonds. In water, solvation of particle surfaces prevents this from occurring and particles behave as hydrophilic ones at all concentrations. A concentration-induced change in particle wettability is thus advanced.  相似文献   

4.
Aqueous dispersions of lightly cross-linked poly(4-vinylpyridine)/silica nanocomposite microgel particles are used as a sole emulsifier of methyl myristate and water (1:1 by volume) at various pH values and salt concentrations at 20 degrees C. These particles become swollen at low pH with the hydrodynamic diameter increasing from 250 nm at pH 8.8 to 630 nm at pH 2.7. For batch emulsions prepared at pH 3.4, oil-in-water (o/w) emulsions are formed that are stable to coalescence but exhibit creaming. Below pH 3.3, however, these emulsions are very unstable to coalescence and rapid phase separation occurs just after homogenization (pH-dependent). The pH for 50% ionization of the pyridine groups in the particles in the bulk (pK(a)) was determined to be 3.4 by acid titration measurements of the aqueous dispersion. Thus, the charged swollen particles no longer adsorb at the oil-water interface. For continuous emulsions (prepared at high pH with the pH then decreased abruptly or progressively), demulsification takes place rapidly below pH 3.3, implying that particles adsorbed at the oil-water interface can become charged (protonated) and detached from the interface in situ (pH-responsive). Furthermore, at a fixed pH of 4.0, addition of sodium chloride to the aqueous dispersion increases the degree of ionization of the particles and batch emulsions are significantly unstable to coalescence at a salt concentration of 0.24 mol kg(-1). The degree of ionization of such microgel particles is a critical factor in controlling the coalescence stability of o/w emulsions stabilized by them.  相似文献   

5.
Multiple emulsions are emulsions within emulsions, stabilized traditionally by monomeric emulsifiers both at the inner and outer interface.  相似文献   

6.
7.
Summary Thermal induced phase inversion of concentrated oil-in-water emulsions stabilized by various fatty acid polyoxyethylene esters of sorbitan (Tween 21, Tween 61, Tween 65, Tween 80 and Tween 81) has been studied. Phase inversion temperature (PIT) was determined by differential thermal analysis and the changes in internal structure of emulsions caused by heating were followed microscopically. The PITS obtained were dependent on the kind of Tween. When the emulsions were stabilized by Tween 65, the PIT also depended on whether the emulsifier was dissolved in water or in oil phase or in the both. Microscopic examination of the emulsions during heating showed that the appearance of water droplets within the oil drops, i.e. the development of a multiphase (W/O/W) emulsion structure precedes phase inversion.
Zusammenfassung Die thermische Phaseninversion konzentrierter Öl-in-Wasser-Emulsionen (durch verschiedene Emulgatoren des Tween-Typs stabilisiert) wurde untersucht und die Phasen-inversionstemperatur durch Differentialthermoanalyse bestimmt.Die Phaseninversionstemperatur hängt von der Tweenart ab. Mit Tween 65 ist die Phaseninversionstemperatur auch davon abhängig, ob der Emulgator in Wasser, in Öl oder in beiden Phasen gelöst wird. Mikroskopische Untersuchungen haben gezeigt, daß Wassertröpfchen innerhalb der Öltropfen entstehen, d. h., daß die Entwicklung einer mehrphasigen Wasser-Ö1-Wasser-Struktur der Phaseninversion vorangeht.


With 5 figures  相似文献   

8.
Thiele J  Seiffert S 《Lab on a chip》2011,11(18):3188-3192
Double emulsions are valuable structures that consist of drops nested inside bigger drops; they can be formed with exquisite control through the use of droplet-based microfluidics, allowing their size, composition, and monodispersity to be tailored. However, only little control can be exerted on the morphology of double emulsions in their equilibrium state, because they are deformable and subject to thermal fluctuations. To introduce such control, we use droplet-based microfluidics to form oil-in-water-in-oil double emulsion drops and arrest their shape by loading them with monodisperse microgel particles. These particles push the inner oil drop to the edge of the aqueous shell drop such that the double emulsions adopt a uniform arrested, anisotropic shape. This approach circumvents the need for ultrafast polymerization or geometric confinement to lock such non-spherical and anisotropic droplet morphologies. To demonstrate the utility of this technique, we apply it to synthesize anisotropic and non-spherical polyacrylate-polyacrylamide microparticles with controlled size and shape.  相似文献   

9.
The effect of pH and salt concentration on the phase inversion of silica particle-stabilized foams is presented. Inversion from a water-in-air powder to an air-in-water foam can be achieved by increasing the pH of the aqueous phase. By contrast, an increase in the salt concentration causes a nonfoaming aqueous dispersion to foam. The results are rationalized in terms of changes in the hydrophobicity of the solid surfaces, probed by measurement of the contact angles of water drops on hydrophobized glass slides in air.  相似文献   

10.
We investigated the phase inversion of Pickering emulsions stabilized by plate-shaped clay particles. Addition of water induced a phase inversion from a water-in-oil (W/O) emulsion to an oil-in-water (O/W) emulsion when the amount of the oil phase exceeded a limiting amount of oil absorption to solid particles. On the other hand, a phase inversion from a powdery state to an O/W emulsion state through an oil-separated state is observed when the amount of an oil phase is less than the limiting amount of the oil absorption. Interestingly, the oil separated is re-dispersed as emulsion droplets into the O/W emulsion phase. This type of phase inversion, which is a feature of the Pickering emulsions stabilized by the clay particles, is caused by a change in the aggregate structures of particles.  相似文献   

11.
Emulsion inversion induced by CO2   总被引:1,自引:0,他引:1  
Herein it was found that CO(2) could trigger an O/W to W/O emulsion inversion via a W/O/W nanoemulsion. In comparison with the conventionally used liquid or solid additives, the unusual advantage of this method is that the emulsion morphologies can be switched reversibly by the control of CO(2) pressure. Besides, CO(2) can be easily removed by depressurization and thus no extra separation process is needed, and CO(2) can be recycled. Furthermore, other lipophilic gases of ethylene, propylene and isobutane can also induce the O/W to W/O emulsion inversion. A possible mechanism for the gas-triggered emulsion inversion was proposed.  相似文献   

12.
This paper deals with the phase behaviour of model abnormal emulsions of cyclohexane/water/polyethoxylated surfactant in the vicinity of the locus of transitional inversion (optimum formulation). Abnormal emulsions are formed under dynamic conditions if the phase containing the soluble surfactant becomes the dispersed phase. Phase maps have been suggested in the literature that define the boundaries of emulsion morphologies. On these maps, only one transformation can be observed for any formulation scan. Furthermore, the morphology of emulsions in the vicinity of the locus of transitional inversion is rather vague. One might assume that by changing the HLB of the surfactant used in an abnormal emulsion to favour the continuous phase, that abnormal emulsion will gradually transform to a normal emulsion of the same type. A new experimental procedure was adopted in which emulsification was started with abnormal emulsions. To transform the abnormal emulsions to the normal emulsion of the same type, they were exposed to variations in temperature, the surfactant HLB, or water–oil phase ratio. As the optimum formulation was approached, the abnormal emulsions became so unstable that could not exist anymore in the un-favoured morphology and inverted to the normal emulsion of the opposite type. Further variation in the formulation along the route led to a transitional inversion to the normal emulsion of the original type. The result indicates an important finding that the transformation of abnormal emulsions to normal ones of the same type occurred via two successive inversions of catastrophic and transitional nature. It appears that the boundaries of catastrophic inversion correspond to the emulsions with the finest drop size. A modification to the phase behaviour maps, to include the locus of catastrophic phase inversion in the vicinity of the transitional inversion, was thus suggested.  相似文献   

13.
Dissolution of -irradiated alkali halides in the emulsions of aromatic hydrocarbon and water results in the formation of halogen charge transfer complexes and hydrogen. These have been identified by spectrophotometry. Further, their formation has been verified by studying the absorption of a chemical model involving hydrogen incorporated in halogen complex. These products are correlated to the F and hole centers of the irradiated salts.  相似文献   

14.
The study of the interaction of a cationic polymer as PEI with phospholipids membranes is of special relevance for gene therapy because the PEI is a potential nonviral vector to transfer DNA in living cells. We used light scattering, zeta potential, and electron transmission microscopy to characterize the interaction between DMPG and DOPC liposomes with PEI as a function of the charge molar ratio, pH, temperature, initial size of the liposomes, and headgroup of the lipids. Unexpectedly, a double charge inversion and two different ranges of PEI-liposome concentrations where an aggregation occurs were found, when the proper pH and initial size of the liposomes were chosen. The interaction is analyzed in terms of the interaction potential proposed by Velegol and Thwar for colloidal particles with a nonuniform surface charge distribution. Results show a remarkable dependence of the stability on pH and the initial size of the liposomes, which explains the low reproducibility of the experiments if no special care is taken in preparing the samples. Comparatively small changes in the pH or in the liposomes size lead to a completely different stability behavior.  相似文献   

15.
The membrane formation by the phase inversion process was studied by coagulating a polysulfone/N-methyl-2-pyrrolidone solution with water vapor as a coagulant. The phase separation occurred when the relative humidity in the membrane casting atmosphere was higher than about 65%. The pore size was strongly affected by the relative humidity as well as the concentration of the polymer solution. It increased as both the relative humidity and the polymer concentration were decreased. The membranes produced showed a uniform structure composed of closed pores. The pure water flux measurement confirmed the closeness of the pores. The information on the late stage phase separation was obtained in situ by an optical microscope due to the slow phase separation. The pores seemed to grow very much at the late stage by coarsening which was observed to occur mainly by coalescence of polymer-lean droplets. As the relative humidity was lower, the coarsening continues longer ending up to a larger droplet size. The coarsening seems to enhance the interconnectivity of pores when the polymer concentration was low enough.  相似文献   

16.
We describe here a new and simple method for preparation of polyurea nanocapsules from nanodroplets that were obtained by the phase inversion temperature (PIT) method. In the first stage, a nano‐emulsion was prepared, by a heating–cooling cycle, in which the oil phase contained an oil soluble monomer (toluene 2 , 4 ‐diisocyanate (TDI)). In the second stage, a water‐soluble monomer and crosslinker (diethylenetriamine (DETA)) was added, leading to formation of a polymeric shell by an interfacial polycondensation reaction. The new method was demonstrated for obtaining nanocapsules of about 100 nm, in which hexadecane, dodecane, or decane were the core materials, without using any special equipment. The morphology and structure of the nanocapsules were evaluated by attenuated total reflection Fourier transform infrared (ATR‐FTIR) measurements and electron microscopy. The thermal behavior of the nanocapsules containing hexadecane was studied by Differential Scanning Calorimetry (DSC) measurements, indicating that such nanocapsules can be utilized in thermal energy storage. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Chiroptical behavior of a hydrogen-bond-regulated chiral polythiourethane segment was inversed by sandwiching sterically demanding segments in copolymers prepared by cationic ring-opening copolymerization of chiral cyclic thiourethanes derived from L-serine.  相似文献   

18.
1α,2α,4α,6α,-3,7-Diazatricyclo[4.1.0.02,4]heptane (cis-diaziridinocyclopentane) (1) has been prepared from the analogous cis-diepoxycyclopentane. Ring opening of the diepoxide with sodium azide produced a pair of regioisomeric azido alcohols. Tosylation and treatment with lithium aluminum hydride produced 1. The dibenzoyl derivative possessed the di-exo stereochemistry for the tertiary aziridine nitrogens. The 1H spectrum of 1 was temperature dependent. Both the CH and NH resonances underwent decoalescence as the temperature was lowered. Because the rate was independent of concentration, the mechanism is probably inversion of the secondary nitrogen, the first such example to occur by the interchange of two diastereotopic, secondary (NH) amine nitrogens within the same molecule. The free energy of activation at coalescence (0 °C) was measured to be 12.8 kcal mol?1. The unsymmetrical slow exchange of 1 is clearly consistent with the exo,endo stereochemistry for the secondary aziridine nitrogens, possibly stabilized by intramolecular attraction.  相似文献   

19.
We investigated protein separation by hydrophobic interaction chromatography (HIC) at low salt concentration on the supports of various hydrophobicities. Hydrophobic proteins could be successfully separated with more than 90% recovery by gradient elution of ammonium sulfate from 0.3-0.5 M to 0 in 50 mM phosphate buffer (pH 6.8) by using supports whose hydrophobicities were properly adjusted individually for each protein. Satisfactory results were also obtained by isocratic elution without ammonium sulfate and gradient elution of ethanol from 0 to 10%. HIC at low salt concentration was compatible with other modes of liquid chromatography like ion-exchange chromatography. On the other hand, it was not successful to separate hydrophilic proteins at low salt concentration. Recoveries of hydrophilic proteins decreased before they were retained enough as support hydrophobicity increased. Therefore, it is inevitable to use a higher concentration of salt, e.g., 1-2 M ammonium sulfate, on hydrophilic or moderately hydrophobic support in order to retain hydrophilic proteins without decrease in recovery.  相似文献   

20.
The flexural properties of a particle adsorption monolayer are investigated theoretically. If the particles are not densely packed, the interfacial bending moment and the spontaneous curvature (due to the particles) are equal to zero. The situation changes if the particles are closely packed. Then the particle adsorption monolayer possesses a significant bending moment, and the interfacial energies of bending and dilatation become comparable. In this case, the bending energy can either stabilize or destabilize the Pickering emulsion, depending on whether the particle contact angle is smaller or greater than 90 degrees . Theoretical expressions are derived for the bending moment, for the curvature elastic modulus, and for the work of interfacial deformation and emulsification. The latter is dominated by the work for creation of a new oil-water interface and by the work for particle adsorption. The curvature effects give a contribution of second order, which is significant only for emulsification at 50:50 water/oil volume fractions. A thermodynamic criterion for the type of the formed emulsion is proposed. It predicts the existence of a catastrophic phase inversion in particle-stabilized emulsions, in agreement with the experimental observations. The derived theoretical expressions could find application for interpretation of experimental data on production and stability of Pickering emulsions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号