首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lutidine derivative (2,6-Me(2))(4-Bpin)C(5)H(2)N when combined with B(C(6)F(5))(3) yields a frustrated Lewis pair (FLP) which reacts with H(2) to give the salt [(2,6-Me(2))(4-Bpin)C(5)H(2)NH][HB(C(6)F(5))(3)] (1). Similarly 2,2'-(C(5)H(2)(4,6-Me(2))N)(2) and (4,4'-(C(5)H(2)(4,6-Me(2))N)(2) were also combined with B(C(6)F(5))(3) and exposed to H(2) to give [(2,2'-HN(2,6-Me(2))C(5)H(2)C(5)H(2)(4,6-Me(2))N][HB(C(6)F(5))(3)] (2) and [(4,4'-HN(2,6-Me(2))C(5)H(2)C(5)H(2)(2,6-Me(2))N] [HB(C(6)F(5))(3)] (3), respectively. The mono-pyridine-N-oxide 4,4'-N(2,6-Me(2))C(5)H(2)C(5)H(2)(2,6-Me(2))NO formed the adduct (4,4'-N(2,6-Me(2))C(5)H(2)C(5)H(2)(2,6-Me(2))NO)(B(C(6)F(5))(3)) (4) which reacts further with B(C(6)F(5))(3) and H(2) to give [(4,4'-HN(2,6-Me(2))C(5)H(2)C(5)H(2)(2,6-Me(2))NO)B(C(6)F(5))(3)] [HB(C(6)F(5))(3)] (5). In a related sense, 2-amino-6-CF(3)-C(5)H(3)N reacts with B(C(6)F(5))(3) to give (C(5)H(3)(6-CF(3))NH)(2-NH(B(C(6)F(5))(3))) (6). Similarly, the species, 2-amino-quinoline, 8-amino-quinoline and 2-hydroxy-6-methyl-pyridine were reacted with B(C(6)F(5))(3) to give the products as (C(9)H(6)NH)(2-NHB(C(6)F(5))(3)) (7), (C(9)H(6)N)(8-NH(2)B(C(6)F(5))(3)) (8) and (C(5)H(3)(6-Me)NH)(2-OB(C(6)F(5))(3)) (9), respectively; while 2-amino-6-picoline, 2-amino-6-CF(3)-pyridine, 2-amino-quinoline, 8-amino-quinoline and 2-hydroxy-6-methyl-pyridine react with ClB(C(6)F(5))(2) to give the species (C(5)H(3)(6-R)NH)(2-NH(ClB(C(6)F(5))(2))) (R = Me (10), R = CF(3) (11)) (C(9)H(6)NH)(2-NH(ClB(C(6)F(5))(2))) (12), (C(9)H(6)N)(8-NH(2)ClB(C(6)F(5))(2)) (13) and (C(5)H(3)(6-Me)NH)(2-OClB(C(6)F(5))(2)) (14), respectively. In a similar manner, 2-amino-6-picoline and 2-amino-quinoline react with B(C(6)F(5))(2)H to give (C(5)H(3)(6-Me)NH)(2-NH(HB(C(6)F(5))(2))) (15) and (C(9)H(6)NH)(2-NH(HB(C(6)F(5))(2))) (16). The corresponding reaction of 8-amino-quinoline yields (C(9)H(6)N)(8-NHB(C(6)F(5))(2)) (17). In a similar fashion, reaction of 2-amino-6-CF(3)-pyridine resulted in the formation of (18) formulated as (C(5)H(3)(6-CF(3))N)(2-NH(B(C(6)F(5))(2)). Finally, treatment of 15 with iPrMgCl gave (C(9)H(6)N)(2-NH(B(C(6)F(5))(2))) (19). Crystallographic studies of 1, 2, 4, 6, 7, 10, 11, 12 and 15 are reported.  相似文献   

2.
The N-imidoylamidine ligand i-Pr2C6H3N(C(Me)NC6H3i-Pr2)2 2 was prepared. Direct reactions with AlI3 or AlMe3 afforded [(i-Pr2C6H3N(C(Me)NC6H3i-Pr2)2)AlI2][AlI4] 3 and [i-Pr2C6H3N(C(Me)NC6H3i-Pr2)2)AlMe2][AlMe4].AlMe3, 4 respectively. Thermolysis of 4 gave (i-Pr2C6H3NC(=CH2)(NC6H3i-Pr2)(C(Me)NC6H3i-Pr2)AlMe2 6. Subsequent reaction with B(C6F5)3 gave the zwitterionic species [(i-Pr2C6H3)N(C(=CH2)NC6H3i-Pr2)(C(Me)NC6H3i-Pr2)AlMe(mu-MeB(C6F5)3)] 7. In a related reactions of 2, [Ph3C][B(C6F5)4] and AlMe3, AlH3.NEtMe2 or AlD3.NMe3, the complexes [(i-Pr2C6H3N(C(Me)NC6H3i-Pr2)2)AlR2][B(C6F5)4] (R = Me 5, H 8, D 9) and [(i-Pr2C6H3)N(C(=CH2)NC6H3i-Pr2)(C(Me)NC6H3i-Pr2)AlH][B(C6F5)4] 10 are formed. Single-crystal X-ray data for 2, 3, 5 and 10 are reported.  相似文献   

3.
New ionic complexes of fullerenes C(60) and C(70) with decamethylchromocene Cp*(2)Cr.C60.(C(6)H(4)Cl(2))(2) (1), Cp*(2)Cr.C60.(C(6)H(6))(2) (2); the multicomponent complex of (Cs(+))(C70-) with cyclotriveratrylene CTV.(Cs)(2).(C70)(2).(DMF)(7).(C(6)H(6))(0.75) (3); bis(benzene)chromium Cr(C(6)H(6))(2).C60.(C(6)H(4)Cl(2))(0.7) (4), Cr(C(6)H(6))(2).C60.C(6)H(5)CN (5), Cr(C(6)H(6))(2).C70.C(6)H(4)Cl(2) (6), Cr(C(6)H(6))(2).C60 (7); cobaltocene Cp(2)Co.C60.C(6)H(4)Cl(2) (8), Cp(2)Co.C70.(C(6)H(4)Cl(2))(0.5) (9); and cesium Cs.C70.(DMF)(5) (10) have been obtained. The complexes have been characterized by the elemental analysis, IR-, UV-vis-NIR spectroscopy, EPR and SQUID measurements. It is shown that C(60)(.-) exists as a single-bonded diamagnetic (C60-)2 dimer in 1, 2, 4, 5, and 8 at low temperatures (1.9-250 K). The dimers dissociate above 160-250 K depending on donor and solvent molecules involved in the complex. C60(.-) dimerizes reversibly and shows a small hysteresis (<2 K) at slow cooling and heating rates. The single-bonded diamagnetic (C70-)2 dimers are also formed in 6, 9, and 10 and begin to dissociate only above 250-360 K. The IR and UV-vis-NIR spectra of sigma-bonded negatively charged fullerenes are presented.  相似文献   

4.
A series of group 6 transition metal half-sandwich complexes with 1,1-dichalcogenide ligands have been prepared by the reactions of Cp*MCl(4)(Cp* = eta(5)-C(5)Me(5); M = Mo, W) with the potassium salt of 2,2-dicyanoethylene-1,1-dithiolate, (KS)(2)C=C(CN)(2) (K(2)-i-mnt), or the analogous seleno compound, (KSe)(2)C=C(CN)(2) (K(2)-i-mns). The reaction of Cp*MCl(4) with (KS)(2)C=C(CN)(2) in a 1:3 molar ratio in CH(3)CN gave rise to K[Cp*M(S(2)C=C(CN)(2))(2)] (M = Mo, 1a, 74%; M = W, 2a, 46%). Under the same conditions, the reaction of Cp*MoCl(4) with 3 equiv of (KSe)(2)C=C(CN)(2) afforded K[Cp*Mo(Se(2)C=C(CN)(2))(2)] (3a) and K[Cp*Mo(Se(2)C=C(CN)(2))(Se(Se(2))C=C(CN)(2))] (4) in respective yields of 45% and 25%. Cation exchange reactions of 1a, 2a, and 3a with Et(4)NBr resulted in isolation of (Et(4)N)[Cp*Mo(S(2)C=C(CN)(2))(2)] (1b), (Et(4)N)[Cp*W(S(2)C=C(CN)(2))(2)] (2b), and (Et(4)N)[Cp*Mo(Se(2)C=C(CN)(2))(2)] (3b), respectively. Complex 4 crystallized with one THF and one CH(3)CN molecule as a three-dimensional network structure. Inspection of the reaction of Cp*WCl(4) with (KSe)(2)C=C(CN)(2) by ESI-MS revealed the existence of three species in CH(3)CN, [Cp*W(Se(2)C=C(CN)(2))(2)]-, [Cp*W(Se(2)C=C(CN)(2))(Se(Se(2))C=C(CN)(2))]-, and [Cp*W(Se(Se(2))C=C(CN)(2))(2)]-, of which [Cp*W(Se(2)C=C(CN)(2))(Se(Se(2))C=C(CN)(2))]-(5) was isolated as the main product. Treatment of 2a with 1/4 equiv of S(8) in refluxing THF resulted in sulfur insertion and gave rise to K[Cp*W(S(2)C=C(CN)(2))(S(S(2))C=C(CN)(2))](6), which crystallized with two THF molecules forming a three-dimensional network structure. 6 can also be prepared by refluxing 2a with 1/4 equiv of S(8) in THF. 3a readily added one Se atom upon treatment with 1 mol of Se powder in THF to give 4 in high yield, while the treatment of 3a or 4 with 2 equiv of Na(2)Se in THF led to formation of a dinuclear complex [(Cp*Mo)(2)(mu-Se)(mu-Se(Se(3))C=C(CN)(2))] (7). The structure of 7 consists of two Cp*Mo units bridged by a Se(2-) and a [Se(Se(3))C=C(CN)(2)](2-) ligand in which the triselenido group is arranged in a nearly linear way (163 degrees). The reaction of 2a with 2 equiv of CuBr in CH(3)CN yielded a trinuclear complex [Cp*WCu(2)(mu-Br)(mu(3)-S(2)C=C(CN)(2))(2)] (8), which crystallized with one CH(3)CN and generated a one-dimensional chain polymer through bonding of Cu to the N of the cyano groups.  相似文献   

5.
Adding 1% of the metallic elements cerium, lanthanum, and yttrium to graphite rod electrodes resulted in different amounts of the hollow higher fullerenes (HHFs) C76-D2(1), C78-C2v(2), and C78-C2v(3) in carbon-arc fullerene-containing soots. The reaction of trifluoroiodomethane with these and other soluble HHFs at 520-550 degrees C produced 21 new C76,78,84,90(CF3)n derivatives (n = 6, 8, 10, 12, 14). The reaction with C76-D2(1) produced an abundant isomer of C2-(C76-D2(1))(CF3)10 plus smaller amounts of an isomer of C1-(C76-D2(1))(CF3)6, two isomers of C1-(C76-D2(1))(CF3)8, four isomers of C1-(C76-D2(1))(CF3)10, and one isomer of C2-(C76-D2(1))(CF3)12. The reaction with a mixture of C78-D3(1), C78-C2v(2), and C78-C2v(3) produced the previously reported isomer C1-(C78-C2v(3))(CF3)12 (characterized by X-ray crystallography in this work) and the following new compounds: C2-(C78-C2v(3))(CF3)8; C2-(C78-D3(1))(CF3)10 and C(s)-(C78-C2v(2))(CF3)10 (both characterized by X-ray crystallography in this work); C2-(C78-C2v(2))(CF3)10; and C1-C78(CF3)14 (cage isomer unknown). The reaction of a mixture of soluble higher fullerenes including C84 and C90 produced the new compounds C1-C84(CF3)10 (cage isomer unknown), C1-(C84-C2(11))(CF3)12 (X-ray structure reported recently), D2-(C84-D2(22))(CF3)12, C2-(C84-D2(22))(CF3)12, C1-C84(CF3)14 (cage isomer unknown), C1-(C90-C1(32))(CF3)12, and another isomer of C1-C90(CF3)12 (cage isomer unknown). All compounds were studied by mass spectrometry, (19)F NMR spectroscopy, and DFT calculations. An analysis of the addition patterns of these compounds and three other HHF(X) n compounds with bulky X groups has led to the discovery of the following addition-pattern principle for HHFs: In general, the most pyramidal cage C(sp(2)) atoms in the parent HHF, which form the most electron-rich and therefore the most reactive cage C-C bonds as far as 1,2-additions are concerned, are not the cage C atoms to which bulky substituents are added. Instead, ribbons of edge-sharing p-C6(X)2 hexagons, with X groups on less pyramidal cage C atoms, are formed, and the otherwise "most reactive" fullerene double bonds remain intact.  相似文献   

6.
报道了3个β-羟亚胺配体(2,6-emPr2C6H3)N=C(Ph)CH2CH(Ph)OH(1a), (2,6-emPr2C6H3)N=C·(Ph)CH2C(Ph)2OH(1b)和(2,6-emPr2C6H3)N=C(Ph)CH2C(C12H8)OH(1c)及其二(β-羟亚胺)二氯化钛配合物[(2,6-emPr2C6H3)N=C(Ph)CH2CH(Ph)O]2TiCl2(2a), [(2,6-emPr2C6H3)N=C(Ph)CH2C(Ph)2O]2·TiCl2(2b)和[(2,6-emPr2C6H3)N=C(Ph)CH2C(C12H8)O]2TiCl2(2c)的合成, 并对其结构进行了表征. 在助催化剂甲基铝氧烷(MAO)作用下, 以化合物2b为主催化剂, 研究了Al/Ti摩尔比、 反应时间、 温度和聚合压力等对乙烯聚合的影响, 发现该催化体系在较宽的反应条件下均可得到很高分子量的聚乙烯, 熔点均在140℃左右. 以化合物2a~2c为主催化剂对乙烯进行催化聚合, 发现在β碳位上取代基的立体位阻对催化剂活性有很大影响. 当化合物2b上引入2个苯基取代基时, 催化剂显示出最佳催化活性.  相似文献   

7.
Smog chamber/FTIR techniques were used to study the Cl atom initiated oxidation of 4:2 fluorotelomer alcohol (C(4)F(9)CH(2)CH(2)OH, 4:2 FTOH) in the presence of NO(x) in 700 Torr of N(2)/O(2) diluent at 296 K. Chemical activation effects play an important role in the atmospheric chemistry of the peroxy, and possibly the alkoxy, radicals derived from 4:2 FTOH. Cl atoms react with C(4)F(9)CH(2)CH(2)OH to give C(4)F(9)CH(2)C(*)HOH radicals which add O(2) to give chemically activated alpha-hydroxyperoxy radicals, [C(4)F(9)CH(2)C(OO(*))HOH]*. In 700 Torr of N(2)/O(2) at 296 K, approximately 50% of the [C(4)F(9)CH(2)C(OO(*))HOH]* radicals decompose "promptly" to give HO(2) radicals and C(4)F(9)CH(2)CHO, the remaining [C(4)F(9)CH(2)C(OO(*))HOH]* radicals undergo collisional deactivation to give thermalized peroxy radicals, C(4)F(9)CH(2)C(OO(*))HOH. Decomposition to HO(2) and C(4)F(9)CH(2)CHO is the dominant atmospheric fate of the thermalized peroxy radicals. In the presence of excess NO, the thermalized peroxy radicals react to give C(4)F(9)CH(2)C(O(*))HOH radicals which then decompose at a rate >2.5 x 10(6) s(-1) to give HC(O)OH and the alkyl radical C(4)F(9)CH(2)(*). The primary products of 4:2 FTOH oxidation in the presence of excess NO(x) are C(4)F(9)CH(2)CHO, C(4)F(9)CHO, and HCOOH. Secondary products include C(4)F(9)CH(2)C(O)O(2)NO(2), C(4)F(9)C(O)O(2)NO(2), and COF(2). In contrast to experiments conducted in the absence of NO(x), there was no evidence (<2% yield) for the formation of the perfluorinated acid C(4)F(9)C(O)OH. The results are discussed with regard to the atmospheric chemistry of fluorotelomer alcohols.  相似文献   

8.
Halogenated 1,3,5-triazapentadienyl ligands [N{(C(3)F(7))C(C(6)F(5))N}(2)](-), [N{(CF(3))C(C(6)F(5))N}(2)](-) and [N{(C(3)F(7))C(2,6-Cl(2)C(6)H(3))N}(2)](-), alone or in combination with other N-donors like CH(3)CN, CH(3)(CH(2))(2)CN, and N(C(2)H(5))(3), have been used in the stabilization of thermally stable, two-, three- or four-coordinate silver(i) adducts. X-Ray crystallographic analyses of {[N{(C(3)F(7))C(C(6)F(5))N}(2)]Ag}(n), {[N{(C(3)F(7))C(C(6)F(5))N}(2)]Ag(NCCH(3))}(n), {[N{(C(3)F(7))C(2,6-Cl(2)C(6)H(3))N}(2)]Ag(NCCH(3))}(n), {[N{(CF(3))C(C(6)F(5))N}(2)]Ag(NCCH(3))(2)}(n) and {[N{(C(3)F(7))C(C(6)F(5))N}(2)]Ag(NCC(3)H(7))}(n) revealed the presence of bridging 1,3,5-triazapentadienyl ligands bonded to silver through terminal nitrogen atoms. These adducts are polymeric in the solid state. [N{(C(3)F(7))C(2,6-Cl(2)C(6)H(3))N}(2)]AgN(C(2)H(5))(3) is monomeric and features a 1,3,5-triazapentadienyl ligand bonded to Ag(I) in a κ(1)-fashion via only one of the terminal nitrogen atoms. The solid state structure of [N{(C(3)F(7))C(C(6)F(5))N}(2)]H has also been reported and it forms polymeric chains via inter-molecular N-H···N hydrogen-bonding.  相似文献   

9.
A series of clip-shaped cationic molecular corners C1~C4(C1 = [(bpy)_2Pd_2(L~1)_2]~(2+), C2 =[(dmbpy)_2Pd_2(L~1)_2]~(2+), C3 =(bpy)_2 Pd_2(L~2)_2]~(2+), C4 =(dmbpy)_2 Pd_2(L~2)_2]~(2+), bpy = 2,2-bipyridine, dmbpy =4,4?-dimethyl-2,2-bipyridine) were synthesized through dipalladium complexes [(bpy)_2Pd_2(NO_3)_2](NO_3)_2,[(dmbpy)_2Pd_2(NO_3)_2](NO_3)_2 and bifunctional pyrazole ligands 4-(3,4-dimethoxyphenyl)-3,5-dimethyl-1H-pyrazol(HL~1) and 4,4?-(5-(1H-pyrazol-4-yl)-1,3-phenylene)dipyridine(HL~2). Complexes C1~C4 were characterized by ~1 H and ~(13)C NMR, electrospray ionization mass spectrometry(ESI-MS), elemental analysis, and IR spectroscopy. The X-ray diffraction analysis of C1?2 NO_3~- revealed a Pd_2 dimetallic clip-shaped structure which was synthesized by two bifunctional ligands doubly bridged by the [(bpy)Pd]_2 dimetal units. Additionally, all of the complexes with NO_3~- as counter anions exhibited high-efficiency catalytical performance in the Suzuki-coupling reaction attributed to the tunable impact and weak dinuclear Pd(Ⅱ)···Pd(Ⅱ) intramolecular bonding interaction.  相似文献   

10.
Wang H  Wang Y  Chan HS  Xie Z 《Inorganic chemistry》2006,45(14):5675-5683
Reaction of [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]TiCl(NMe2) (1) with 1 equiv of PhCH2K, MeMgBr, or Me3SiCH2Li gave corresponding organotitanium alkyl complexes [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(R)(NMe2) (R = CH2Ph (2), CH2SiMe3 (4), or Me (5)) in good yields. Treatment of 1 with 1 equiv of n-BuLi afforded the decomposition product {[eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti}2(mu-NMe)(mu:sigma-CH2NMe) (3). Complex 5 slowly decomposed to generate a mixed-valence dinuclear species {[eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti}2(mu-NMe2)(mu:sigma-CH2NMe) (6). Complex 1 reacted with 1 equiv of PhNCO or 2,6-Me2C6H3NC to afford the corresponding monoinsertion product [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(Cl)[eta(2)-OC(NMe2)NPh] (7) or [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(Cl)[eta(2)-C(NMe2)=N(2,6-Me2C6H3)] (8). Reaction of 4 or 5 with 1 equiv of R'NC gave the titanium eta(2)-iminoacyl complexes [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(NMe2)[eta(2)-C(R)=N(R')] (R = CH2SiMe3, R' = 2,6-Me2C6H3 (9) or tBu (10); R = Me, R' = 2,6-Me2C6H3 (11) or tBu (12)). The results indicated that the unsaturated molecules inserted into the Ti-N bond only in the absence of the Ti-C(alkyl) bond and that the Ti-C(cage) bond remained intact. All complexes were fully characterized by various spectroscopic techniques and elemental analyses. Molecular structures of 2, 3, 6-8, and 10-12 were further confirmed by single-crystal X-ray analyses.  相似文献   

11.
The compounds [K((mu-N(SiMe3)C(Ph))2CH)(thf)2]infinity 1, [K(mu-N(SiMe3)C(Ph)C(H)C(Ph)NH)L]2 [L = (thf)2 2, tmen 3], [K(mu-NSi(Me)2C(Ph)C(H)C(Ph)N)(thf)3]2 4 and [K(N(H)C(Ph))2CH](thf)0.5 5 have been prepared from K[(N(SiMe3)C(Ph))2CH] and the X-ray structures of 1-4 are reported.  相似文献   

12.
合成了5个新的二丙炔醇酯类化合物[(CO2CH2C≡CH)2(1),CH2(CO2CH2C≡CH)2,(2),(CH2CO2CH2C≡CH2)(3),(CHCO2CH2C≡CH)2,(4),C6H4-1,4-(CO2CH2C≡CH)2,(5)],并对其进行了C/H,IR和^1H NMR等表征。  相似文献   

13.
The reactions of [Tl(2)[S(2)C=C[C(O)Me](2)]](n) with [MCl(2)(NCPh)(2)] and CNR (1:1:2) give complexes [M[eta(2)-S(2)C=C[C(O)Me](2)](CNR)(2)] [R = (t)Bu, M = Pd (1a), Pt (1b); R = C(6)H(3)Me(2)-2,6 (Xy), M = Pd (2a), Pt (2b)]. Compound 1b reacts with AgClO(4) (1:1) to give [[Pt(CN(t)Bu)(2)](2)Ag(2)[mu(2),eta(2)-(S,S')-[S(2)C=C[C(O)Me](2)](2)]](ClO(4))(2) (3). The reactions of 1 or 2 with diethylamine give mixed isocyanide carbene complexes [M[eta(2)-S(2)C=C[C(O)Me](2)](CNR)[C(NEt(2))(NHR)]] [R = (t)Bu, M = Pd (4a), Pt (4b); R = Xy, M = Pd (5a), Pt (5b)] regardless of the molar ratio of the reagents. The same complexes react with an excess of ammonia to give [M[eta(2)-(S,S')-S(2)C=C[C(O)Me](2)](CN(t)Bu)[C(NH(2))(NH(t)Bu)]] [M = Pd (6a), Pt (6b)] or [M[eta(2)-(S,S')-S(2)C=C[C(O)Me](2)][C(NH(2))(NHXy)](2)] [M = Pd (7a), Pt (7b)] probably depending on steric factors. The crystal structures of 2b, 4a, and 4b have been determined. Compounds 4a and 4b are isostructural. They all display distorted square planar metal environments and chelating planar E,Z-2,2-diacetyl-1,1-ethylenedithiolato ligands that coordinate through the sulfur atoms.  相似文献   

14.
Ti(C5H5)2(C8H4S8) (1), Ti(C5Me5)2(C8H4S8) (2), [NMe4][Ti(C5H5)(C8H4S8)2] (3), and [NMe4][Ti(C5Me5)(C8H4S8)2] (4) [C8H4S8(2-) = 2-(4,5-ethylenedithio)-1,3-dithiole-2-ylidene)-1,3-dithiole-4,5- dithiolate(2-)] were prepared by reaction of Ti(C5H5)2Cl2, Ti(C5Me5)2Cl2, Ti(C5H5)Cl3, or Ti(C5Me5)Cl3 with Li2C8H4S8 or [NMe4]2[C8H4S8] in THF. They were oxidized by iodine, the ferrocenium cation, or TCNQ (7,7,8,8-tetracyano-p-quinodimethane) in CH2Cl2 or in acetone to afford one-electron-oxidized and over-one-electron-oxidized species, [Ti(C5H5)2(C8H4S8)].I3, [Ti(C5H5)2(C8H4S8)][PF6], [Ti(C5Me5)2(C8H4S8)].I3, [Ti(C5Me5)2(C8H4S8)][PF6], [Ti(C5H5)(C8H4S8)2].I0.9, [Ti(C5H5)(C8H4S8)2][TCNQ]0.3, [Ti(C5Me5)(C8H4S8)2].I2.4, and [Ti(C5Me5)(C8H4S8)2][TCNQ]0.3, with the C8H4S8 ligand-centered oxidation. They exhibited electrical conductivities of 1.6 x 10(-1) to 7.6 x 10(-4) S cm-1 measured for compacted pellets at room temperature. The crystal structure of 2 was clarified to consist of isolated dimerized units of the molecules through some sulfur-sulfur nonbonded contacts: monoclinic, P2(1)/c, a = 9.534(2) A, b = 18.227(2) A, c = 17.775(2) A, beta = 94.39(1) degrees, Z = 4.  相似文献   

15.
Three types of interplay/synergy between spin-crossover (SCO) and liquid crystalline (LC) phase transitions can be predicted: (i) systems with coupled phase transitions, where the structural changes associated to the Cr<-->LC phase transition drives the spin-state transition, (ii) systems where both transitions coexist in the same temperature region but are not coupled, and (iii) systems with uncoupled phase transitions. Here we present a new family of Fe(II) metallomesogens based on the ligand tris[3-aza-4-((5-C(n))(6-R)(2-pyridyl))but-3-enyl]amine, with C(n) = hexyloxy, dodecyloxy, hexadecyloxy, octadecyloxy, eicosyloxy, R = hydrogen or methyl (C(n)-trenH or C(n)-trenMe), which affords examples of systems of types i, ii, and iii. Self-assembly of the ligands C(n)-trenH and C(n)-trenMe with Fe(A)2 x xH2O salts have afforded a family of complexes with general formula [Fe(C(n)-trenR)](A)2 x sH2O (s > or = 0), with A = ClO4(-), F-, Cl-, Br- and I-. Single-crystal X-ray diffraction measurements have been performed on two derivatives of this family, named as [Fe(C6-trenH)](ClO4)2 (C(6)-1) and [Fe(C6-trenMe)](ClO4)2 (C(6)-2), at 150 K for C(6)-1 and at 90 and 298 K for C(6)-2. At 150 K, C(6)-1 displays the triclinic space group P, whereas at 90 and at 298 K C(6)-2 adopts the monoclinic P2(1)/c space group. In both compounds the iron atoms adopt a pseudo-octahedral symmetry and are surrounded by six nitrogen atoms belonging to imino groups and pyridines of the ligands C(n)-trenH and C(n)-trenMe. The average Fe(II)-N bonds (1.963(2) A) at 150 K denote that C(6)-1 is in the low-spin (LS) state. For C(6)-2 the average Fe(II)-N bonds (2.007(1) A) at 90 K are characteristic of the LS state, while at 298 K they are typical for the high-spin (HS) state (2.234(3) A). Compound C(6)-1 and [Fe(C18-trenH)](ClO4)2 (C(18)-1) adopts the LS state in the temperature region between 10 and 400 K, while compound C(6)-2 and [Fe(Cn-trenMe)](ClO4)2 (n = 12 (C(12)-2), 18 (C(18)-2)) exhibit spin crossover behavior at T(1/2) centered around 140 K. The thermal spin transition is accompanied by a pronounced change of color from dark red (LS) to orange (HS). The light-induced excited spin state trapping (LIESST) effect has been investigated in compounds C(6)-2, C(12)-2 and C(18)-2. The T(1/2)LIESST is 56 K (C(6)-2), 48 K (C(16)-2), and 56 K (C(18)-2). On the basis of differential scanning calorimetry, optical polarizing microscopy, and X-ray diffraction findings for C(18)-1, C(12)-2, and C(18)-2 at high temperature a smectic mesophase SX has been identified with layered structures similar to C(6)-1 and C(6)-2. The compounds [Fe(C(n)-trenH)](Cl)2 x sH2O (n = 16 (C(16)-3, s = 3.5, C(16)-4, s = 0.5, C(16)-5, s = 0), 18 (C(18)-3, s = 3.5, C(18)-4, s = 0.5, C(18)-5, s = 0), 20 (C(20)-3, s = 3.5, C(20)-4, s = 0.5, C(20)-5, s = 0)) and [Fe(C18-tren)](F)2 x sH2O (C(18)-6, s = 3.5, C(18)-7, s = 0) show a very particular spin-state change, while [Fe(C18-tren)](Br)2 x 3H2O (C(18)-8) together with [Fe(C18-tren)](I)2 (C(18)-9) are in the LS state (10-400 K) and present mesomorphic behavior like that observed for the complexes C(18)-1, C(12)-2, and C(18)-2. In compounds C(n)-3 50% of the Fe(II) ions undergo spin-state change at T(1/2) = 375 K induced by releasing water, and in partially dehydrated compounds (s = 0.5) the Cr-->SA phase transition occurs at 287 K (C(16)-4), 301 K (C(18)-4) and 330 K (C(20)-4). For the fully dehydrated materials C(n)-5 50% of the Fe(II) ions are in the HS state and show paramagnetic behavior between 10 and 400 K. In the partially dehydrated C(n)-4 the spin transition is induced by the change of the aggregate state of matter (solid<-->liquid crystal). For compound C(18)-6 the full dehydration to C(18)-7 provokes the spin-state change of nearly 50% of the Fe(II) ions. The compounds C(n)-3 and C(18)-6 are dark purple in the LS state and become light purple-brown when 50% of the Fe(II) atoms are in the HS state.  相似文献   

16.
The crystalline dimeric 1-azaallyllithium complex [Li{mu,eta(3-N(SiMe3)C(Ad)C(H)SiMe3}]2 (1) was prepared from equivalent portions of Li[CH(SiMe3)2] and 1-cyanoadamantane (AdCN). Complex was used as precursor to each of the crystalline complexes 2-8 which were obtained in good yield. By 1-azaallyl ligand transfer, 1 afforded (i) [Al{eta3-N(SiMe3)C(Ad)C(H)SiMe3}{kappa1-N(SiMe3)C(Ad)=C(H)SiMe3-E}Me] (5) with [AlCl2Me](2), (ii) [Sn{eta3-N(SiMe3)C(Ad)C(H)SiMe3}2] (7) with Sn[N(SiMe3)2]2, and (iii) [Li(N{C(Ad)=C(H)SiMe3-E}{Si(NN)SiMe3})(thf)2] (8) with the silylene Si[(NCH(2)Bu(t))2C6H(4)-1,2] [= Si(NN)]. By insertion into the C[triple bond, length as m-dash]N bond of the appropriate cyanoarene RCN, gave the beta-diketiminate [Li{mu-N(SiMe3)C(Ad)C(H)C(R)NSiMe3}]2 [R = Ph (2), C(6)H(4)Me-4 (3)], and yielded [Al{kappa2-N(SiMe3)C(Ad)C(H)C(Ph)NSiMe3}{kappa1-N(SiMe3)C(Ad)=C(H)SiMe3-E}Me] (6). The beta-diketiminate [Al{kappa2-N(SiMe3)C(Ad)C(H)C(Ph)NSiMe3}Me2] (4) was prepared from 2 and [AlClMe2]2. The X-ray structures of 1 and 3-8 are presented. Multinuclear NMR spectra in C6D6 or C6D5CD3 have been recorded for each of 1-8; such data on 8 revealed that in solution two minor isomers were also present.  相似文献   

17.
The (13)C NMR spectrum of 2-butyl-1,2-(13)C(2) cation (1) is unchanged on heating the sample to -78 degrees C, indicating no isomerization to another isotopomer. In contrast, the spectrum of 2-butyl-2,3-(13)C(2) cation (2) shows rapid formation of all of the other isotopomers except 1. These results are consistent with a protonated cyclopropane intermediate in the rearrangement process. In this mechanism, either C(1) and C(2) or C(3) and C(4) interchange. Only the bond between C(2) and C(3) breaks.  相似文献   

18.
A series of novel double salts of silver(I) were isolated by dissolving Ag(2)C(2) in a concentrated aqueous solution of R(F)CO(2)Ag (R(F) = CF(3), C(2)F(5)) and AgBF(4). Different ancillary solvento ligands such as H(2)O, CH(3)CN, and C(2)H(5)CN were found to affect the crystallization process that led to the assembly of various silver(I) cages with embedded C(2)(2-) ions. 2Ag(2)C(2) x 12CF(3)CO(2)Ag x 5H(2)O (1) consists of two independent C(2)@Ag(7) cages, each having the shape of a basket with a square base. Ag(2)C(2) x 6CF(3)CO(2)Ag x 3CH(3)CN (2) contains a zigzag chain of edge-sharing triangulated dodecahedra, and 4Ag(2)C(2) x 23CF(3)CO(2)Ag x 7C(2)H(5)CN x 2.5H(2)O (3) features an unusual double-walled silver column constructed from the fusion of four different kinds of irregular polyhedra. Ag(2)C(2) x 10C(2)F(5)CO(2)Ag x 9.5H(2)O (4), Ag(2)C(2) x 9C(2)F(5)CO(2)Ag x 3CH(3)CN x H(2)O (5), and Ag(2)C(2) x 6C(2)F(5)CO(2)Ag x 2C(2)H(5)CN (6) all contain an edge-sharing double cage with each single cage in the shape of a square antiprism, a capped square antiprism, and a triangulated dodecahedron, respectively.  相似文献   

19.
Treatment of 1,3,5-triazapentadienes [N{(C3F7)C(Mes)N}2]H and [N{(C3F7)C(Dipp)N}2]H (where Mes = 2,4,6-Me3C6H2; Dipp = 2,6-Pr(i)2C6H3) with n-BuLi in hexane, followed by the crystallization from hexane-THF mixture afforded the corresponding lithium 1,3,5-triazapentadienyl complexes as their THF solvates. X-Ray crystallographic analyses revealed that [N{(C3F7)C(Mes)N}2]Li(THF)2 and [N{(C3F7)C(Dipp)N}2]Li(THF) are monomeric in the solid state. [N{(C3F7)C(Mes)N}2]Li(THF)2 has a four-coordinate lithium center with a distorted tetrahedral geometry, and features a boat-shaped C2N3Li metallacycle. [N{(C3F7)C(Dipp)N}2]Li(THF) has a three-coordinate lithium atom and a planar, U-shaped C2N3 ligand backbone. The synthesis, solid-state structure, and 1H and 19F NMR spectroscopic details of [N{(C3F7)C(Mes)N}2]H are also reported.  相似文献   

20.
The synthesis, structure and reactivity of a new bipy thorium metallocene have been studied. The reduction of the thorium chloride metallocene [η(5)-1,3-(Me(3)C)(2)C(5)H(3)](2)ThCl(2) (1) with potassium graphite in the presence of 2,2'-bipyridine gives the purple bipy metallocene [η(5)-1,3-(Me(3)C)(2)C(5)H(3)](2)Th(bipy) (2) in good yield. Complex 2 has been fully characterized by various spectroscopic techniques, elemental analysis and X-ray diffraction analysis. Complex 2 reacts cleanly with trityl chloride, silver halides and diphenyl diselenide, leading to the halide metallocenes [η(5)-1,3-(Me(3)C)(2)C(5)H(3)](2)ThX(2) (X = Cl (1), Br (3), I (4)) and [η(5)-1,3-(Me(3)C)(2)C(5)H(3)](2)Th(F)(μ-F)(3)Th[η(5)-1,3-(Me(3)C)(2)C(5)H(3)](F)(bipy) (5), and selenido metallocene [η(5)-1,3-(Me(3)C)(2)C(5)H(3)](2)Th(SePh)(2) (6), in good conversions. In addition, 2 cleaves the C[double bond, length as m-dash]S bond of CS(2) to give the sulfido complex, [η(5)-1,3-(Me(3)C)(2)C(5)H(3)](2)ThS (7), which further undergoes an irreversible dimerization or nucleophilic addition with CS(2), leading to the dimeric sulfido complex {[η(5)-1,3-(Me(3)C)(2)C(5)H(3)](2)Th}(μ-S)(2) (8) and dimeric trithiocarbonate complex {[η(5)-1,3-(Me(3)C)(2)C(5)H(3)](2)Th}(μ-CS(3))(2) (10) in good yields, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号