首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
2.
3.
4.
Transmetalation of an aminocarbene moiety from [W(CO)5{C(NEt2)R}] to palladium leads to isolable monoaminocarbene palladium aryl complexes [{Pd(mu-Br)Pf[C(NEt2)R]}2] (R = Me, Ph; Pf = C6F5). When [W(CO)5{C(OMe)R}] is used, the corresponding palladium carbenes cannot be isolated since these putative, more electrophilic carbenes undergo a fast migratory insertion process to give alkyl palladium complexes. These complexes could be stabilized in the eta3-allylic form for R = 2-phenylethenyl or in the less stable eta3-benzylic fashion for R = Ph. Hydrolysis products and a pentafluorophenylvinylic methyl ether (when R = Me) were also observed. The monoaminocarbenes slowly decompose through carbene-aryl coupling to produce the corresponding iminium salts and, depending on the reaction conditions, the corresponding hydrolysis products. The electrophilicity of the carbene carbon, which is mainly determined by the nature of the heteroatom group, controls the ease of evolution by carbene-aryl coupling. Accordingly, no carbene-aryl coupling was observed for a diaminocarbene palladium aryl complex.  相似文献   

5.
6.
The synthesis of NHC-PdCl(2)-3-chloropyridine (NHC=N-heterocyclic carbene) complexes from readily available starting materials in air is described. The 2,6-diisopropylphenyl derivative was found to be highly catalytically active in alkyl-alkyl Suzuki and Negishi cross-coupling reactions. The synthesis, ease-of-use, and activity of this complex are substantial improvements over in situ catalyst generation and all current Pd-NHC complexes. The utilization of complex 4 led to the development of a reliable, easily employed Suzuki-Miyama protocol. Employing various reaction conditions allowed a large array of hindered biaryl and drug-like heteroaromatic compounds to be synthesized without difficulty.  相似文献   

7.
8.
This paper describes the synthesis, characterization and applications of palladium (Pd) nanoparticles supported on siliceous mesocellular foam (MCF). Pd nanoparticles of 2-3 nm and 4-6 nm were used in reactions involving molecular hydrogen (such as hydrogenation of double bonds and reductive amination), transfer hydrogenation of ketones and epoxides, and coupling reactions (such as Heck and Suzuki reactions). They successfully catalyzed all these reactions with excellent yield and selectivity. This heterogeneous catalyst was easily recovered by filtration, and recycled several times without any significant loss in activity and selectivity. The palladium leaching in the reactions was determined to be much less than the FDA-approved limit of 5 ppm. Furthermore, the catalyst can be stored and handled under normal atmospheric conditions. This immobilized catalyst allows for ease of recovery/reuse and minimization of waste generation, which are of great interest in the development of green chemical processes.  相似文献   

9.
10.
It does get in! A fluoride‐assisted direct cross‐coupling of cyclic enamides with trialkoxy aryl silanes by a palladium‐catalyzed C? H activation leads to a wide range of enamides in yields of up to 95 %.

  相似文献   


11.
12.
The direct Pd-catalyzed oxidative coupling of two C-H-bonds within N-aryl-enamines 1 allows the efficient formation of differently substituted indoles 2. In this cross-dehydrogenative coupling, many different functional groups are tolerated and the starting material N-aryl-enamines 1 can be easily prepared in one step from commercially available anilines. In addition, the whole sequence can also be run in a one-pot fashion. Optimization data, mechanistic insight, substrate scope, and applications are reported in this full paper.  相似文献   

13.
14.
15.
Pick your Pd partners : A number of catalytic systems have been developed for palladium‐catalyzed C? H activation/C? C bond formation. Recent studies concerning the palladium(II)‐catalyzed coupling of C? H bonds with organometallic reagents through a PdII/Pd0 catalytic cycle are discussed (see scheme), and the versatility and practicality of this new mode of catalysis are presented. Unaddressed questions and the potential for development in the field are also addressed.

  相似文献   


16.
Palladium can tailor fullerenes : Palladium catalysts enable a number of C? H bond transformations of organo(hydro)fullerene. In addition to anticipated coupling reactions (C? H bond allylation and arylation), an unexpected new C? H bond dimerization reaction and C? C bond‐cleavage reaction were also uncovered.

  相似文献   


17.
An unexpected C? H bond dimerization reaction and C? C bond‐cleavage reaction in organo(hydro)fullerenes have been discovered. In their Communication on page 4760 ff. , K. Itami and M. Nambo describe the use of Pd catalysts for a number of interesting reactions of such fullerenes.

  相似文献   


18.
19.
Mechanisms based on the 1,4-migration of metal centers have been proposed to explain some interesting transition-metal-catalyzed organic transformations. Despite the lack of solid evidence for the real nature of this process, the 1,4-metal migration reaction is proposed to proceed by the reductive elimination of trivalent intermediates for the Rh-involved reactions and of tetravalent intermediates for the Pd-catalyzed processes. These high-valent organometallic species would be formed by the oxidative addition to C-H and C-X bonds. This minireview summarizes the results in this area.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号