首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The stability of the homogeneous deformation for an elastic bar subject to uniaxial tension is studied. It is shown that the critical extension at which the homogeneous deformation becomes unstable is a decreasing function of the aspect ratio. Furthermore, it is shown that for small aspect ratios, the homogeneous deformation need not be the global minimizer of the total energy, even though it may be a local minimizer.  相似文献   

2.
本文根据变形功与熔化热能的关系,将简单拉伸实验方法推广应用到了熔化热能和变形热效应的测量上。按简单拉伸实验方法测得的熔化热能与热力学的测量结果吻合较好。该研究实现了力学实验方法与物理实验方法的互换,因此,具有重要的实际应用价值。  相似文献   

3.
混凝土的弹塑性损伤双面本构模型   总被引:3,自引:0,他引:3  
针对混凝土材料拉压应变空间下损伤机制的不同,结合连续损伤力学和塑性理论建立了一个全新的本构模型。该模型中损伤和塑性变形的演变由应变空间的同一个非弹性曲面来控制,但对拉压应变空间中非弹性曲面的演变分别采用了随动强化法则和各向同性演化规律。计算结果表明,该模型能较好地描述混凝土材料在单轴及多轴单调加载和低周反复荷载下的典型非线性特征。  相似文献   

4.
超弹性材料的不稳定性问题   总被引:1,自引:0,他引:1  
任九生  程昌钧 《力学进展》2009,39(5):566-575
超弹性材料是一类性能独特、不可替代且有广泛工程应用的高分子材料,对其独特的材料不稳定性问题的研究极大地推动了连续介质力学有限变形理论和超弹性理论的发展.综述了超弹性材料中的材料不稳定性问题的研究成果和最新进展,包括Rivlin立方块问题、薄壁球壳和薄壁圆筒的内压膨胀问题、圆柱的扭转问题、块体的表面不稳定性问题、空穴的生成、增长和闭合问题等.阐述了这类材料中各类非线性不稳定性问题的特点、问题的求解、主要结果及今后进一步的研究方向等.   相似文献   

5.
The paper is devoted to a stability and out-of-plane deformation analysis of an axially moving elastic web modelled as a panel (a plate undergoing cylindrical deformation). The panel is under homogeneous pure mechanical in-plane tension and thermal strains corresponding to the thermal tension and bending. In accordance with the static approach of stability analysis the problem of out-of-plane thermomechanical divergence (buckling) is reduced to an eigenvalue problem which is analytically solved. This problem corresponds to the case of in-plane thermomechanical tension and zero thermal bending. The general case of deformations induced by combined thermomechanical bending and tension is reduced to nonhomogeneous boundary-value problem and analyzed with the help of Fourier series.  相似文献   

6.
A basic scheme of establishing experiments to find three material functions of tensor nonlinear constitutive relations in continuum mechanics is described. These material functions depend on the three invariants of a stress state. It is proposed to use long hollow cylindrical specimens suitable to implement any combination of the following realizable stress states: uniaxial tension, torsion, longitudinal shear, and uniform compression.  相似文献   

7.
In this paper, we combine experiments and numerical simulations to investigate the large deformation mechanics of periodically patterned cylindrical structures under uniaxial compression. Focusing on cylinders with a square array of circular pores, we show that their buckling behavior is not only controlled by the porosity (as for the case of the corresponding infinitely large planar structures), but also by the length and thickness of the shell and the number of pores along the full circumference. While infinitely long cylindrical shells only support long wavelength (global) modes, by reducing the length and tuning the thickness, short wavelength (local) modes can be observed. Furthermore, frustrated short wavelength modes are triggered when a local instability is critical, but the buckling pattern is not compatible with the number of pores along the circumference.  相似文献   

8.
Hydrogen enhanced localized plasticity (HELP) is a viable mechanism for hydrogen embrittlement supported by experimental observations. According to the HELP mechanism, hydrogen induced premature failures result from hydrogen induced plastic instability which leads to hydrogen assisted localized ductile processes. The objective of this work is to reveal the role of hydrogen in possibly localizing the macroscopic deformation into bands of intense shear using solid mechanics methodology. The hydrogen effect on material deformation is modeled through the hydrogen induced volume dilatation and the reduction in the local flow stress upon hydrogen dissolution into the lattice. Hydrogen in assumed to reside in both normal interstitial lattice sites (NILS) and reversible traps associated with the plastic deformation. The analysis of the plastic deformation and the conditions for plastic flow localization are carried out in plane strain uniaxial tension. For a given initial hydrogen concentration in the unstressed specimen, a critical macroscopic strain is identified at which shear localization commences.  相似文献   

9.
Necking and neck propagation as observed in polymers which “cold draw” is analyzed numerically for a circular cylindrical tensile specimen. The entire load-deformation history of the bar is computed using the finite element method in conjunction with hill's (1958, 1959) variational principle. Rate-independent elastic-plastic material behaviour is assumed.Results are given for the overall load-elongation response of the bar, as well as for the evolution of the specimen profile and the stress and strain distributions in the bar at various stages of the deformation process. The implications of our results on conventional methods used to analyze tension data for polymers are also discussed.  相似文献   

10.
The superelastic behavior of polycrystalline nano-grained NiTi shape memory alloy microtube under uniaxial tension is studied in this paper. The nominal stress–strain curve of the microtube during superelastic deformation is recorded. Both direct surface observation and observation by using a special surface coating show that the deformation of the tube is via the nucleation and propagation of macroscopic stress-induced martensite band. It is also found that the martensite nucleates in the form of a spiral lens-shaped narrow band that inclines at about 33o to the plane of cross section of tube when the stress reaches the peak of stress–strain curve. The spiral band grew via gradual increase in both width and length of the band and finally merged into a single cylindrical band. The subsequent deformation of the tube is realized by the growth of this cylindrical martensite band. Several other deformation features of the tube are also observed and the results are discussed and compared with the theoretical analysis in this paper.  相似文献   

11.
An incremental mean-field model is developed for the prediction of transformation induced plasticity (TRIP) in multiphase steel. The partitioning of strain between softer and harder constituents is computed based on an elastic-plastic Mori–Tanaka approach that accounts for the progressive transformation of austenite into martensite. The latter transformation is predicted using an energy-balance criterion that is formulated at the level of individual austenite grains. The model has been tested against experimental data. Macroscopic stress-strain curves and rate of martensite formation have been measured on sheet samples subjected to various loading modes: uniaxial tension, simple shear, and (in-plane) uniaxial compression. These experiments were performed at 20 °C and the uniaxial tensile test was repeated at ?30 °C. The mean-field model produces fair predictions of the macroscopic hardening resulting from TRIP on the condition that a sufficient proportion of the load is carried by the very hard martensite inclusions. Such prediction implies that one accounts for the stress heterogeneity across the ferrite-based matrix. At the same time, the model reproduces the elastic lattice strains and the plastic elongation which are measured within the phases by neutron diffraction and by image correlation in a scanning electron microscope, respectively. The model can be used in finite element simulations of forming processes which is illustrated in a study of necking of a cylindrical bar under uniaxial tension.  相似文献   

12.
Failure initiation in unnotched cylindrical bar specimens is predicted by application of the strain energy density theory. Maximum value of the local minimum strain energy density function is calculated, the critical value of which is assumed to coincide with failure by monotonic as well as cyclic uniaxial loading. Damage is accumulated in the specimen for each increment of monotonically rising load and each cycle of repeatedly applied load. Use is made of the incremental theory of plasticity to account for permanent deformation that is nonuniformly distributed throughout the cylindrical bar. Failure initiation site is found to occur at the center of the bar for monotonic loading where dilatation is dominant and near the specimen surface for fatigue loading where distortion is more significant. The results are consistent with the experimental observations without including microstructural effects. Nonhomogeneity caused by macro-dilatation and macro-distortion is also shown to play an important role in failure initation.  相似文献   

13.
The stress–strain curves of bread dough were derived under uniaxial compression, uniaxial tension and equi-biaxial tension loading conditions. In uniaxial compression, a lubricant was used to eliminate frictional effects between the loading platens and the sample. In uniaxial tension, cylindrical samples with thin flat discs at both ends (‘I’ samples) were tested. The discs at both ends were allowed to air-dry and were subsequently glued onto the loading platens. In equi-biaxial tension, a thin disc of dough was inflated into a bubble using pressurised air. The thickness at the top of the bubble was measured by shining a light through the walls of the bubble and recording the change in light intensity as the wall becomes thinner. All methods ensured that uniform deformation was obtained. Stress and strain were accurately evaluated using image analysis techniques. The tests were performed at various strain rates and speeds that defined the time dependence of the material. A non-linear viscoelastic model based on the Prony series and Van der Waals hyperelasticity was used to predict all test data. The model had a total of five material parameters and two time constants, which were set to represent the actual time scales of the experiments. A reasonable agreement between the experimental data and the chosen material model was observed.  相似文献   

14.
In this paper, a constitutive framework based on a rate-dependent crystal plasticity theory is employed to simulate the large strain deformation phenomena in hexagonal closed-packed (HCP) metals such as magnesium. The new framework is incorporated into in-house codes. Simulations are performed using the new crystal plasticity model in which crystallographic slip and deformation twinning are the principal deformation mechanisms. Simulations of various stress states (uniaxial tension, uniaxial compression and the so-called ring hoop tension test) for the magnesium alloy AM30 are performed and the results are compared with experimental observations of specimens deformed at 200 °C. Numerical simulations of forming limit diagrams (FLDs) are also performed using the Marciniak–Kuczynski (M–K) approach. With this formulation, the effects of crystallographic slip and deformation twinning on the FLD can be assessed.  相似文献   

15.
The strain-strength characteristics of aerostructures made of hardening materials under uniaxial tension in creep conditions are determined. The problem is reduced to a system of ordinary differential equations of the kinetic theory of creep with one scalar damage parameter. The approximate solutions of the problem are obtained with the help of the implicit Euler method and of the arc length method in combination with the explicit methods of the Runge–Kutta family for cylindrical St.45 steel samples and 3V titanium alloy plates.  相似文献   

16.
The concepts of continuum damage mechanics (CDM) are discussed and aconstitutive framework of CDM is proposed for infinitesimal deformation based on the internalvariables approach. The framework involves transforming the actual damaged continuum into anequivalent fictitious undamaged continuum. A distinction is made between the state of damageand the damage measure. The development makes use of the concept of damage force. Thenegative of the damage force is related to the energy required to restore the fictitious undamagedcontinuum to its undamaged state after each step of deformation and damage. A set of equationand constraint governs the deformation of the fictitious continuum, while another set of equationand constraint governs the damage behavior. The coupling between the deformation and damageprocesses is provided for by the damage restoring force concept. Within the proposedconstitutive framework, the endochronic concept has been used to derive explicit constitutiveequations. The proposed model has been shown to describe the three-dimensional state ofdeformation of a cylindrical concrete specimen subjected to uniaxial compression.  相似文献   

17.
18.
The problem of nonlinear deformation and buckling of noncircular cylindrical shells under combined loading is solved by the variational finite-element method in the displacement formulation. A numerical algorithm for solving the problem is proposed. Stability of cylindrical shells with an elliptic cross-sectional contour under a combined action of torsion and bending is analyzed. The effect of cross-sectional ellipticity and nonlinear prebuckling deformation on the critical loads and buckling mode is studied.  相似文献   

19.
The effects of strain rate and temperature on the tension stress–strain responses of polycarbonate are experimentally investigated over a wide range of strain rates (0.001–1700 s−1) and temperatures (0–120 °C). A modified split Hopkinson tension bar is used for high-rate uniaxial tension tests. Experimental results indicate that the stress–strain responses of polycarbonate at high strain rates exhibit the nonlinear characteristics including the obvious yielding and strain softening. The tension behavior is strongly dependent on the strain rate and temperature. The values of yield stress and strain at yield present a dramatic increase at higher strain rates and decrease with the increase in temperature. Moreover, there exists a significant rate-sensitivity transition in the polycarbonate tension yield behavior. Based on the experimental investigation, a physically based three-dimensional elastoplastic constitutive model for the finite deformation of glassy polymers is used to characterize the rate-temperature dependent yield and post-yield behavior of polycarbonate when subjected to tension loading. The model results are shown close to the experimental data within the investigated strain-rate and temperature ranges.  相似文献   

20.
In uniaxial tension, the stress–strain curve for rubber changes curvature from concave to convex as the strain increases. For sudden tensile loading of a bar, a one-dimensional model that reflects this behavior leads to an under-determined problem reminiscent of that arising in materials capable of undergoing phase transitions. In the latter setting, adding the kinetic relation underlying the phase change to the conventional statement of the problem removes the indeterminacy; the same is true when such a relation is used in a formal way in the problem for rubber. This presents a physical question: What is the evolutionary process at the microscale whose kinetics are needed in the dynamics of rubber?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号