首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 709 毫秒
1.
Let Pij and qij be positive numbers for ij, i, j = 1, …, n, and consider the set of matrix differential equations x′(t) = A(t) x(t) over all A(t), where aij(t) is piecewise continuous, aij(t) = ?∑ijaij(t), and pij ? aij(t) ? qij all t. A solution x is also to satisfy ∑i = 1nxi(0) = 1. Let Ct denote the set of all solutions, evaluated at t to equations described above. It is shown that Ct, the topological closure of Ct, is a compact convex set for each t. Further, the set valued function Ct, of t is continuous and limitt → ∞C?t = ∩ C?t.  相似文献   

2.
3.
We classify gradings by arbitrary abelian groups on the classical simple Lie superalgebras P(n), n2, and on the simple associative superalgebras M(m,n), m,n1, over an algebraically closed field: fine gradings up to equivalence and G-gradings, for a fixed group G, up to isomorphism. As a corollary, we also classify up to isomorphism the G-gradings on the classical Lie superalgebra A(m,n) that are induced from G-gradings on M(m+1,n+1). In the case of Lie superalgebras, the characteristic is assumed to be 0.  相似文献   

4.
We consider weak solutions to the nonlinear boundary value problem (r, (x, u(x)) u′(x))′ = (Fu)′(x) with r(0, u(0)) u′(0) = ku(0), r(L, u(L)) u′(L) = hu(L) and k, h are suitable elements of [0, ∞]. In addition to studying some new boundary conditions, we also relax the constraints on r(x, u) and (Fu)(x). r(x, u) > 0 may have a countable set of jump discontinuities in u and r(x, u)?1?Lq((0, L) × (0, p)). F is an operator from a suitable set of functions to a subset of Lp(0, L) which have nonnegative values. F includes, among others, examples of the form (Fu)(x) = (1 ? H(x ? x0)) u(x0), (Fu)(x) = ∫xLf(y, u(y)) dy where f(y, u) may have a countable set of jump discontinuities in u or F may be chosen so that (Fu)′(x) = ? g(x, u(x)) u′(x) ? q(x) u(x) ? f(x, u(x)) where q is a distributional derivative of an L2(0, L) function.  相似文献   

5.
6.
Let GF(pn) denote the finite field of pn elements, p odd. Let A be an s×m matrix of rank ?, B be an s×t matrix of rank β, and C be an f×t matrix of rank v. This paper discusses the number of m×f matrices X of rank k over GF(pn) which are solutions to the matric equations AXC=B or AX=B.  相似文献   

7.
We consider the M/M/s/K retrial queues in which a customer who is blocked to enter the service facility may leave the system with a probability that depends on the number of attempts of the customer to enter the service facility. Approximation formulae for the distributions of the number of customers in service facility, waiting time in the system and the number of retrials made by a customer during its waiting time are derived. Approximation results are compared with the simulation.  相似文献   

8.
For the pair of matrix equations AX = C, XB = D this paper gives common solutions of minimum possible rank and also other feasible specified ranks.  相似文献   

9.
10.
11.
We conjecture that the equilibrium waiting-time distribution in an M/G/s queue increases stochastically when the service-time distribution becomes more variable. We discuss evidence in support of this conjecture and others based partly on light-traffic and heavy-traffic limits. We also establish an insensitivity property for the case of many servers in light traffic.  相似文献   

12.
13.
14.
The main concern of this paper is linear matrix equations with block-companion matrix coefficients. It is shown that general matrix equations AX ? XB = C and X ? AXB = C can be transformed to equations whose coefficients are block companion matrices: C?LX?XCM = diag[I 0…0] and X?C?LXCM = diag[I 0…0], respectively, where ?L and CM stand for the first and second block-companion matrices of some monic r × r matrix polynomials L(λ) = λsI + Σs?1j=0λjLj and M(λ) = λtI + Σt7minus;1j=0λjMj. The solution of the equat with block companion coefficients is reduced to solving vector equations Sx = ?, where the matrix S is r2l × r2l[l = max(s, t)] and enjoys some symmetry properties.  相似文献   

15.
16.
17.
Let GF(q) be the finite field of order q, let Q(x) be an irreducible polynomial in GF(q)(x), and let h(T)(x) be a linear polynomial in GF(q)[x], where T:xxq. We use properties of the linear operator h(T) to give conditions for Q(h(T)(x)) to have a root of arbitrary degree k over GF(q), and we describe how to count the irreducible factors of Q(h(T)(x)) of degree k over GF(q). In addition we compare our results with those Ore which count the number of irreducible factors belonging to a linear polynomial having index k.  相似文献   

18.
19.
When A, B and C are given square matrices and C is of rank one, sufficient conditions are given for every solution to be nonsingular when solutions exist. When C has arbitrary rank, some sufficient conditions are given; and when, additionally, A and B have disjoint spectra, necessary conditions are given.  相似文献   

20.
A theory is presented for absolutely continuous solutions of the general scalar first order autonomous o.d.e. Necessary and sufficient conditions are given for local and global existence and uniqueness, and further topics include existence-uniqueness duality, structure of the solution set and weak solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号